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Abstract—The configuration of a system determines the system
behavior and wrong configuration settings can adversely impact
system’s availability, performance, and correctness. We refer to
these wrong configuration settings as configuration bugs. The
importance of configuration bugs has prompted many researchers
to study it, and past studies can be grouped into three cate-
gories: detection, localization, and fixing of configuration bugs.
In the work, we focus on the detection of configuration bugs,
in particular, we follow the line-of-work that tries to predict
if a bug report is caused by a wrong configuration setting.
Automatically prediction of whether a bug is a configuration bug
can help developers reduce debugging effort. We propose a novel
approach named EFSPredictor which applies ensemble feature
selection on the natural-language description of a bug report.
It uses different feature selection approaches (e.g., ChiSquare,
GainRatio and Relief) which output different ranked lists of
textual features. Next, to obtain a set of representative textual
features, EFSPredictor first assigns different scores to the features
outputted by these feature selection approaches. Next, for each
feature, EFSPredictor sums up the scores outputted by the
multiple ranked lists, and outputs the top features (e.g., 25%
of the total number of features) as the selected features. Finally,
EFSPredictor builds a prediction model based on the selected
features. We conduct experiments on 5 bug report datasets (i.e.,
accumulo, activemq, camel, flume, and wicket) containing a total
of 3,203 bugs. The experiment results show that, on average across
the 5 projects, EFSPredictor achieves an F1-score to 0.57, which
improves the state-of-the-art approach proposed by Xia et al. by
14%.

Keywords—Ensemble Feature Selection, Configuration Bugs,
Data Mining

I. INTRODUCTION

Developers often allow users to customize system behav-
iors flexibly via configuration options. Furthermore, through
sharing of libraries, registry entries, environment variables
and configuration files, applications can interact with one
another conveniently. Unfortunately, this flexibility incurs a
cost, software systems become complex and hard to set up
resulting in various configuration problems.

There have been a number of studies which show that
configuration bugs (i.e., misconfiguration) significantly impact
the availability, performance, and correct working of software
systems. For example, a substantial amount of technical sup-
port time, which contributes 17% of the total cost of ownership
of today’s desktop PCs, is spent on troubleshooting, and
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most of the problems are due to misconfigurations [35]. As
Gallagher reported on June 2015, an executive of Airbus Group
has confirmed that the crash of an Airbus A400M military
transport was caused by a faulty software configuration [2].
Recent research has even found that operators frequently
misconfigure Internet services, causing various availability and
performance problems [49]. Rabkin and Katz’s study indicates
that misconfigurations are the dominant cause of Hadoop
clusters breakdown [26]. An empirical study of issues in
Amazon EC2 APIs points out that misconfigurations by API
users are the main factor leading to interaction faults [21].
A significant portion of misconfigurations can cause hard-
to-diagnose failures (e.g., crashes, hangs, severe performance
degradation), indicating that systems should be better-equipped
to handle misconfigurations [43]. Xu et al. [41] advocate soft-
ware developers to play an active role in handling configuration
bugs rather than blindly blame users for misconfigurations.

Many research studies have been carried out on detecting,
locating and fixing configuration bugs. In this work, we focus
on the problem of detecting configuration bugs. In particular,
we extend the line-of-work that identifies configuration bugs
among the many bug reports that are submitted to an issue
tracking system (aka. configuration bug reports prediction).
Given a bug report, identifying whether it is a configuration
bug or not can help developers reduce their debugging effort.
For those that are configuration bugs, developers can focus
their effort on checking configuration files rather than source
code. Two most recent works in this direction are by Arshad
et al. [8] and Xia et al. [38]. Xia et al. use Arshad et al.’s
method as a baseline and their experiment results show that
their proposed approach improves the F1-score of Arshad et
al.’s method. Despite this improvement, the F1-score achieved
by Xia et al.’s approach is not optimal, and in this work, we
aim to improve it further.

We present a new approach named EFSPredictor which
combines multiple feature selection technologies to obtain a
set of representative features, and then builds a statistical
prediction model on these representative features extracted
from historical bug reports with known labels (i.e., non-
configuration or configuration). This statistical model can then
be used to predict a new bug report as either a configuration
bug report or not. EFSPredictor first uses different feature
selection approaches (e.g., ChiSquare, GainRatio and Relief)
to output different ranked lists of textual features. Then,
EFSPredictor assigns different scores to the features outputted
by these feature selection approaches. Next, for each feature,
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TABLE I. THE F1-SCORE FOR 5 SINGLE FEATURE SELECTION

ALGORITHMS BUILT ON 5 DATASETS

Projects Relief ChiSquare Filtered GainRatio OneR
accumulo 0.55 0.60 0.61 0.61 0.58
activemq 0.37 0.44 0.44 0.44 0.40

camel 0.49 0.52 0.52 0.52 0.53
flume 0.57 0.55 0.55 0.54 0.53

wicker 0.35 0.44 0.44 0.44 0.34

EFSPredictor sums up the scores for each of the ranked lists,
and outputs the top features with the highest scores (e.g., top
25% features). Finally, EFSPredictor builds a prediction model
based on the selected top features.

We evaluate our approach on 5 datasets consisting of 3,203
bug reports from different open source software projects: ac-
cumulo [1], activemq [3], camel [4], flume [5], and wicket [6].
The experiment results show that, on average across the 5
projects, EFSPredictor achieves an F1-score of 0.57, which
improves the F1-score achieved by the state-of-the-art ap-
proach proposed by Xia et al. by 14%.

The main contributions of this paper are as follows:

1) We introduce a new approach which uses an ensemble
of feature selection technologies on natural-language
descriptions in bug reports to identify configuration
bugs.

2) Through an experiment using 5 datasets containing a
total of 3,203 bugs, we demonstrate the effectiveness
of our approach. Our approach EFSPredictor outper-
forms the state-of-the-art method proposed by Xia et
al. by a substantial margin.

The remainder of this paper is structured as follows. We
elaborate the motivation of our work in Section II. We describe
the overall framework and the details of EFSPredictor in
Section III. We present our experiments and the results in
Section IV. We review related work in Section V. We conclude
and mention future work in Section VI.

II. MOTIVATION

In this section, we elaborate the intuition of our proposed
tool EFSPredictor which is based on an ensemble of feature
selection algorithms. We do so by describing why an ensemble
of feature selection algorithms can boost the effectiveness of
predicting configuration bugs.

Many feature selection algorithms have been proposed
in the machine learning field. Each of these algorithms is
based on a different heuristic to evaluate the importance of a
feature. Since they are only heuristics, some feature selection
algorithms may perform better than others on some cases, but
worse on other cases. One way to address the weaknesses of
these feature selection algorithms is to integrate them together
in order to make a comprehensive judgement. Many studies,
e.g., [23], [28], [32] have argued that using an ensemble of
feature selection techniques has a great promise for high-
dimensional problems with small sample sizes. By using
an ensemble of feature selection techniques, we can utilize
the advantages of the various feature selection techniques
to generate a set of most representative features to improve
prediction results.

To demonstrate that the above hypothesis applies in our
setting (i.e., configuration bug prediction), we perform an
initial experiment using 5 feature selection algorithms, i.e.,
ChiSquare, Filter, GainRatio, OneR, Relief, on 5 datasets, i.e.,
accumulo, activemq, camel, flume, and wicket. We use naive
Bayes multinomial, which was also used by Xia et al. [38],
to build statistical prediction models from selected features.
We use the standard 10-fold cross validation to evaluate the
effectiveness of the models learned using features selected by
the 5 algorithms, and utilize F1-score as a yardstick to evaluate
the models’ effectiveness.

Table I presents the F1-scores achieved using each of the 5
feature selection algorithms for the 5 datasets. We notice that
none of these 5 feature selection algorithms can defeat all the
other algorithms for all datasets. For example, for accumulo,
Filter and GainRatio achieve the best performance. But OneR
achieves the best performance on camel, and Relief achieves
the best performance on flume. Since the relative effectiveness
of different feature selection algorithms differs for different
cases, in this paper, we aim to utilize the advantages of multiple
feature selection algorithms that are ensembled together.

III. OUR PROPOSED APPROACH

In this section, we first present the overall framework of our
proposed EFSPredictor in Section III-A. Then, we introduce
the 5 feature selection techniques that we ensemble together
in Section III-B. Next, we describe the details of a core
computation step performed by EFSPredictor in Section III-C.

A. Overall Framework

Figure 1 presents the overall framework of EFSPredictor.
The framework contains two phases: model building phase
and prediction phase. In the model building phase, we build
a statistical prediction model that is able to predict if a bug
report corresponds to a configuration bug or not. This model
is used in the prediction phase to predict if a new bug report
is a configuration bug or not.

Given a training set of bug reports with known labels,
EFSPredictor first extracts and preprocesses the natural lan-
guage descriptions in the bug reports by tokenizing them,
removing stop words, and stemming the tokens (Step 1). In the
tokenization process, we extract words in bug reports. In the
stop word removal process, we remove frequently appearing
words that provide little help to differentiate one bug report
from another. We use a list of stop words that is available at
http://snowball.tartarus.org/algorithms/english/stop.txt. In the
stemming process, we reduce each word to its root form,
for example, words “write” and “written” are both reduced
to “writ”. We use a popular stemming algorithm namely the
Porter stemmer [24]. After the preprocessing step, we represent
the natural language description sof bug reports in the form
of “bags of words” [10], and each pre-processed word is
considered as a textual feature (Step 2). Next, we apply 5
different feature selection algorithms (i.e., ChiSquare, Filter,
GainRatio, OneR, Relief) on the features extracted from the
training bug reports (Step 3). This process produces five ranked
list of features. EFSPredictor then selects a set of the most
representative features by merging the five ranked lists into a
single one and outputs the topmost features (Step 4). We refer
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Fig. 1. Overall Framework of EFSPredictor

to this set as the ensembled feature subset. We only keep this
ensembled feature subset from the training set of bug reports
and build a statistical prediction model using a classification
algorithm (Step 5). By default, we use naive Bayes multinomial
as the classification algorithm.

After the statistical prediction model is built, in the predic-
tion phase, for each unlabeled/new bug report, EFSPredictor
first preprocesses it using the same preprocessing strategy as
the model building phase (Step 6), which results in a set of
textual features (Step 7). Next, we only keep the features that
are in the ensembled feature subset (Step 8). Then, we input
these features into the prediction model (Step 9), which outputs
the prediction results: configuration bug or not (Step 10).

B. Feature Selection Techniques

Feature selection techniques try to identify features which
are the most helpful in differentiating different classes (in
our case: configuration bugs or not). Many studies show that
feature selection can improve predictive accuracy, help learn
model that is more compact, and reduce execution time [13].
In this paper, we consider 5 state-of-the-art feature selection
techniques, namely ChiSquare, Filter, GainRatio, OneR, Relief
to generate 5 ranked list of features that are then composed to-
gether. We use these 5 techniques since they were successfully
used in many previous works [48], [33]. We describe these
5 feature selection techniques in a nutshell in the following
paragraphs:

ChiSquare. ChiSquare is a popular feature selection method
that uses chi-square test (a famous discrete data hypothesis
testing method from statistics), to evaluates the correlation
between each feature and the class label (in our case: configu-
ration bug or not) and determine whether they are independent
or correlated [17]. The chi-square (χ2) value for a feature t
considering a class c can be computed using Equation 1.

χ2(t, c) =
N ∗ (A ∗D −B ∗ C)2

(A+ C) ∗ (B +D ∗ (A+B) ∗ (C +D)
(1)

In the above equation, N is the total number of training
bug reports, A is the number of bug reports with class c that
contains feature (i.e., word) t, B is the number of bug reports
not in class c that contains feature t, C is the number of bug
reports in class c that does not contain feature t, and D is the
number of bug reports not in class c that does not contain
feature t. After the χ2 scores of the features are computed,
ChiSquare feature selection technique returns a ranked list
of features sorted in descending order of their χ2 scores.
ChiSquare was used before to solve many text classification
problems and showed promising results [11], [42].

Filter. Filter feature selection technique first resamples a
training dataset by randomly duplicating some data instances
(in our case: bug reports) in the minority class (i.e., class
with the least members) such that the numbers of instances in
both classes (in our case: configuration bugs or not) are equal.
After the resampling step, it runs ChiSquare technique on the
balanced training dataset to obtain a ranked list of features.

GainRatio. Another way to estimate the importance of a
feature is to measure how much information the feature can
bring to classify a data instance (in our case: a bug report)
following information theory principles. GainRatio measures
the importance of a feature f in a training dataset D by
following Equation 2.

GainRatio(f,D) =
IG(f,D)

IV (f,D)
(2)

IG(f,D) = H(D)− ∑

v∈VAL(f,D)

|Df=v|
|D| ×H(Df=v) (3)
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IV (f,D) = − ∑

v∈VAL(f,D)

|Df=v|
|D| × log2

|Df=v|
|D| (4)

H(D) = − ∑

c∈{+,−}
Dc

D × log2
Dc

D (5)

The GainRatio score of a feature f given a dataset D is
defined by normalizing the information gain (IG) score of the
feature f (defined in Equation 3) with intrinsic value (IV) score
of the feature f (defined in Equation 4) considering dataset
D. Information gain is defined based on entropy (H) defined
in Equation 3. In the equations, VAL(f,D) corresponds to a
set of values of attribute f in dataset D, Df=v corresponds
to a subset of D whose attribute f is of value v, and Dc

corresponds to a subset of D which belongs to class c (in our
setting: configuration bugs or not). GainRatio feature selection
technique sorts features based on their gain ratio scores and
outputs the ranked list of features.

OneR. OneR is the abbreviation of “One Rule” which is
proposed by Holte [15]. The basic idea of OneR is to build
one rule for each feature in a training set of data instances (in
our case: bug reports), and measure the prediction accuracies
of the rules. The features are ranked based on the prediction
accuracies of their associated rules. For more details of OneR,
please refer to [15].

Relief. Relief is a feature selection algorithm for binary classi-
fication which performs n iterations [18]. In the ith iteration,
it randomly takes a data instance (i.e., a bug report) x, and
finds instances which are closest to that of x (measured using
Euclidean distance). We refer to the closest same-class instance
as “near-hit” (denoted as hit), and the closest different-class
instance as “near-miss” (denoted as miss). For each feature
f , we update its feature score fscore by following Equation 6.

fscore = fscore − (xf − hitf )
2 + (xf −missf )

2 (6)

In the above equation, xf , hitf , and missf correspond to
the values of feature f for x, hit, and miss data instances
respectively. At the end of n iterations, each feature will have
a feature score fscore, and Relief ranks the features according
to their feature scores.

C. Feature List Composition

Algorithm 1 presents the details of the feature list com-
position step that is performed during the model construction
phase of EFSPredictor. This step takes as input five ranked
lists of features that are outputted by the five feature selection
techniques (RL = {L1, L2, L3, L4, L5}), a set of all features
(FS), and the number of representative features to output. It
outputs a set of representative features referred to as ensembled
feature subset (EFS).

The algorithm goes through each ranked list, and for each
feature, it assigns a weight to it based on its position in the
list (Lines 9-14). The weight of a feature f in the ith list (wi

f )
is computed by taking the reciprocal of its position in the list

(Line 12). Next, for each feature f , the algorithm computes a
score for it (sf ) by summing up the weights assigned to it for
each of the ranked lists (Lines 15-17). Finally, the algorithm
outputs the top n of the features with the highest scores (Lines
18-19). By default, we set n as 25% of the total number of
features.

Algorithm 1 Feature List Composition

1: ComposeList
2: Input:
3: RL = {L1, L2, L3, L4, L5}: Five ranked lists of features
4: FS: Set of all features
5: n: Output size
6: Output:
7: EFS: Ensembled feature subset
8: Method:
9: for all ranked list Li ∈ RL do

10: for all feature f ∈ FS do
11: pos = position of f in Li;
12: wi

f = 1
pos

;
13: end for
14: end for
15: for all feature f ∈ FS do
16: sf =

∑
i w

i
f

17: end for
18: EFS = Top n features with highest sf scores
19: Output EFS

IV. EXPERIMENTS AND RESULTS

In this section, we measure the effectiveness of EFSPre-
dictor and compare it with the state-of-the-art approach by
Xia et al. [38]. The experimental environment is an Intel(R)
Core(TM) T6570 2.10 GHz desktop with 4GB RAM running
Windows 7 (32-bit).

A. Experiment Setup

We evaluate EFSPredictor on 5 datasets containing a total
of 3,203 bug reports from open source software projects (i.e.,
accumulo, activemq, camel, flume, and wicket), which are the
same datasets used by Xia et al. [38] to evaluate their work.
Each of the datasets contains a number of bug reports labeled
as configuration bugs or not. Table II provides a summary
information about the 5 datasets, including the project name
(Project), the number of bug reports collected (# Bugs), the
time period of the collected bug reports (Time), the number of
configuration bug reports (# Confs), and the number of unique
terms (i.e., words) in the bug reports (# Terms). To extract
words from these bug reports, we use WVTool. WVTool is a
Java library for statistical language modeling, which is used
to create word vector representations of text documents. To
reduce noise due to rarely used words, we remove words which
appear less than 5 times.

To reduce training set selection bias, we perform 10-
fold cross-validation. We randomly split each dataset into ten
subsets (each with almost equal numbers of configuration and
non-configuration bugs) and use 9 subsets for training and one
subset for evaluation. The process is repeated ten times with
a different subset used for evaluation in each iteration. In the
end, an aggregate evaluation score computed across the ten
iterations is reported. Cross validation is a standard and useful
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evaluation setting, which has been widely used in past software
engineering studies [22], [30], [37].

TABLE II. STATISTICS OF COLLECTED DATASETS

Project #Bugs Time #Confs #Terms
accumulo 181 2011. 10 - 2013. 06 33 227
activemq 175 2005. 12 - 2007. 12 29 327

camel 1,189 2007. 07 - 2013. 09 333 1,261
flume 279 2010. 07 - 2013. 05 83 341
wicket 1,379 2006. 11 - 2013. 09 46 1,340

B. Evaluation Metrics

The effectiveness of prediction models for two-class clas-
sification problems (e.g., predicting configuration bugs vs.
non-configuration bugs) is typically evaluated using precision,
recall and F1-score. They are defined based on four basic
statistics: TP (true positive) represents the number of bug
reports that are classified as configuration bug reports when
they truly are configuration bug reports; FP (false positive)
represents the number of bug reports that are classified as con-
figuration bug reports when they actually are non-configuration
bug reports; FN (false negative) represents the number of
bug reports that are classified as non-configuration bug re-
ports when they actually are configuration bug reports; TN
(true negative) represents the number of bug reports that are
classified as non-configuration bug reports and they truly are
non-configuration bug reports. Precision, recall, and F1-score
can be computed from these four statistics as follows:

• Precision. The proportion of bug reports correctly
classified as configuration bug reports among those
classified as configuration bug reports. It is defined
as:

P =
TP

TP + FP
(7)

• Recall. The proportion of bug reports correctly clas-
sified as configuration bug reports among all configu-
ration bug reports. It is defined as:

R =
TP

TP + FN
(8)

• F1-score. A harmonic mean of precision and recall.
It is defined as:

F1 =
2× P ×R

P +R
(9)

F1-score is a summary measure that evaluates if an increase
in precision (recall) outweighs a loss in recall (precision).
Since often there is a trade-off between precision and recall,
in many past software engineering papers, F1-score is often
used as the main evaluation metric – c.f., [27], [45]. In this
paper, we also choose F1-score as the main evaluation metric.

C. Research Questions and Findings

We are interested to answer the following research ques-
tions:

RQ1: How effective is EFSPredictor? How much improve-
ment can it achieve over the method proposed by Xia et
al.?

Motivation. We need to investigate the effectiveness of EF-
SPredictor, and compare it with the best performing variant
of Xia et al.’s approach [38]. Answer to this research question
would shed light to whether and to what extent EFSPredictor
improves over the state-of-the-art approach.

Approach. To answer this research question, we compute pre-
cision, recall, and F1-score of EFSPredictor and the approach
proposed by Xia et al. when they are applied to the 5 datasets
listed in Table II. We perform 10-fold cross-validation and
report the average evaluation scores across the ten iterations.

Result. Table III presents the precision, recall and F1-score
of EFSPredictor and Xia et al.’s approach. From the table,
we can note that the F1-scores of EFSPredictor for each
of the five datasets are 0.73, 0.48, 0.54, 0.59, 0.50, which
outperform Xia et al.’s approach by 20%, 7%, 10%, 10% and
20%, respectively. On average, EFSPredictor outperforms Xia
et al.’s approach in terms of F1-score by 14%. The results show
that the improvement that EFSPredictor achieves over Xia et
al.’s approach is substantial. We can draw the conclusion that
EFSPredictor performs better than Xia et al.’s approach.

EFSPredictor outperforms Xia et al.’s approach in predicting
configuration bugs. The improvement in F1-score is 7-20%
with an average of 14%.

RQ2: Does combining multiple feature selection techniques
helps improve the effectiveness of EFSPredictor?

Motivation. EFSPredictor is built on top of 5 feature selection
techniques. We want to investigate whether EFSPredictor
achieves better performance compared to its variant that only
uses one feature selection method.

Approach. To answer this research question, we compute the
F1-scores of standard EFSPredictor and five variants that only
uses one of the 5 feature selection techniques, when they are
applied to the 5 datasets listed in Table II.

Result. Table IV presents the F1-scores of EFSPredictor and
its five variants when they are applied to the 5 datasets. From
the table, we can see that EFSPredictor achieves the best F-
measure for almost all the datasets with one exception. It losses
to its variant that only uses Relief for one dataset (i.e., flume).
Averaging across the five datasets, EFSPredictor outperforms
its five variants. The results show that EFSPredictor approach
to ensemble multiple features selection algorithms is effective.

In almost all cases and on average, composing multiple
feature selection techniques improves the effectiveness of
predicting configuration bugs.

RQ3: What is the impact of using different numbers of
selected features on the effectiveness of EFSPredictor?

Motivation. By default, we set the number of selected fea-
tures (i.e., parameter n in Algorithm 1) as 25% of the total
number of features. We investigate whether different number
of selected features impacts the effectiveness of EFSPredictor.

Approach. To answer this research question, we vary the
number of selected features from 5% to 100% (with a step
of 5%) of the total number of features and compute the
corresponding F1-scores of EFSPredictor for the different
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TABLE III. PRECISION, RECALL AND F1-SCORE OF EFSPREDICTOR AND XIA ET AL.’S APPROACH

accumulo activemq camel flume wicker

Precision
Xia et al.’s Approach 0.52 0.35 0.58 0.49 0.32

EFSPredictor 0.66 0.48 0.61 0.57 0.42

Recall
Xia et al.’s Approach 0.73 0.62 0.44 0.60 0.65

EFSPredictor 0.82 0.48 0.48 0.63 0.63

F1-score

Xia et al.’s Approach 0.61 0.45 0.49 0.54 0.42
EFSPredictor 0.73 0.48 0.54 0.59 0.50
Improvement 0.20 0.07 0.10 0.10 0.20

TABLE IV. F1-SCORE OF EFSPredictor AND ITS 5 VARIANTS

Relief ChiSquare Filtered GainRatio OneR EFSPredictor
accumulo 0.56 0.61 0.61 0.61 0.58 0.62
activemq 0.37 0.44 0.44 0.44 0.40 0.44

camel 0.49 0.52 0.52 0.52 0.52 0.52
flume 0.57 0.55 0.55 0.55 0.54 0.56
wicker 0.35 0.44 0.44 0.44 0.34 0.45

Fig. 2. Effectiveness of EFSPredictor for Different Numbers of Features

numbers of features. We plot the resultant F1-scores for each
of the 5 datasets in Figure 2.

Result. From Figure 2, we can notice a general trend: F1-
score increases when we increase the number of features until
a certain point, after which, the F1-score starts to decrease.
When we use too few features, these features are not able
to fully characterize the difference between configuration and
non-configuration bugs. On the other hand, when we use too
many features, some features capture noise reduces the ef-
fectiveness of EFSPredictor. For most datasets, EFSPredictor
achieves the best F1-score when the number of features are
between 15% to 30% of the total number of features.

The effectiveness of EFSPredictor initially improves when we
increase the number of features until a certain point, beyond
which the effectiveness of EFSPredictor starts to decrease.
For most datasets, the best number of features is between
15% to 30% of the total number of features.

D. Threats to Validity

Threats to internal validity relate to common errors in our
experiments. We have checked our experiments and implemen-
tations, still there could be errors that we did not notice.

Threats to external validity relate to the generalizability
of our results. We have analyzed a total of 3,203 bug reports
from 5 open source software projects. In the future, we plan to
reduce this threat further by analyzing more bug reports from
additional open source software projects.

Threats to construct validity refer to the suitability of our
evaluation metrics. We use precision, recall, and F1-scores as
the evaluation metrics. These metrics are standard and widely
used to evaluate the effectiveness of a prediction technique,
c.f., [25], [36]. Thus, we believe there is little threat to
construct validity.

V. RELATED WORK

In this section, we briefly review some previous studies
on configuration bug reports, bug report categorization, and
classification in software engineering. Due to space limitation,
the survey here is by no means complete.

A. Studies on Configuration Bugs

Xia et al. propose a text mining technique to predict if a bug
report is due to a misconfiguration [38]. Our work builds upon
their work by integrating multiple feature selection algorithms,
i.e., ChiSquare, Filter, GainRatio, OneR, and Relief, to produce
a set of representative features. The experiments results show
that our proposed approach improves Xia et al.’s approach by
a substantial margin.

Aside from the closest related work by Xia et al., there
are a number of other studies on configuration bugs. Wang et
al. present PeerPressure, which leverages statistical methods
to diagnose the root-cause of configuration errors [34]. Yin et
al. perform an empirical study on configuration bugs in five
software systems, and they find that most configuration bugs
are due to incorrect parameter setting [43]. Zhang and Ernst
use static analysis, dynamic profiling, and statistical analysis
to detect configuration issues [46]. Arshad et al. study con-
figuration bugs from two open source projects, i.e., GlassFish
and JBoss, and they characterize the configuration bugs from
four dimensions, i.e., problem-type, problem-time, problem-
manifestation, and problem-culprit [8]. Xu et al. propose a tool
SPEX to expose misconfiguration vulnerabilities, and detect
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error-prone configuration design in software systems [41].
Attariyan and Flinn propose AutoBash to diagnose configu-
ration bugs by leveraging the causal dependencies of test case
executions [9]. Our study complements the above studies and
consider a different problem – we predict whether a bug report
is caused due to misconfigurations.

B. Studies on Bug Categorization

There have been a number of studies that automatically
group bugs into various categories. Zanetti et al. propose the
usage of social network to predict valid bugs in open source
projects [44]. They construct a social network by considering
the reporters, the assigned developers, and the developers in
the CC list of bug reports, and extract a number of features
from the network, such as closeness centrality, betweenness
centrality, and LCC, to differentiate valid from invalid bug
reports. Antoniol et al. propose a classification approach that
can predict if an issue report is a bug report or a feature
request [7]. Their approach is extended by Zhou et al. [50];
different from Antoniol et al.’s work that only uses text features
from issue reports, Zhou et al. use both text features and
non-text features (i.e., values of reporter, assignee, priority,
severity, and component fields) extracted from bug reports to
classify issue reports into bug reports and feature requests
more accurately. Herzig et al. perform an empirical study on
the impact of misclassification on bug prediction [14]. They
propose six fine-grained categories of bug reports, i.e., bug,
enhancement, improvement, documentation, refactoring, and
others. Kochhar et al. extend Herzirg et al.’s work by proposing
an automated approach to predicts if a bug report needs to be
reclassified and its reclassified category [19].

Gegick et al. use text mining techniques to identify se-
curity bug reports [12]. Thung et al. propose an approach to
automatically categorize bug reports into 3 labels: a control
bug, data flow bug, or a structural bug [29]. Huang et al.
predict the impact of bugs by analyzing the textual contents
extracted from bug reports [16]. They classify a bug into
five categories: reliability, capability, integrity, usability, and
requirements. Xia et al. propose a technique to categorize
bugs based on their fault triggering conditions [40]. Xia et
al. also propose ELBlocker to identify blocking bugs [39].
ELBlocker first randomly divides training data into multiple
disjoint sets, and for each disjoint set, it builds a classifier;
next, it combines these multiple classifiers, and automatically
determines an appropriate imbalance decision boundary to
differentiate blocking bugs from non-blocking bugs.

Our work is orthogonal to the above studies; we focus on
identifying configuration bugs, which is a different problem
than those investigated in the above studies.

C. Studies on Classification in Software Engineering

There have been many other studies that employ clas-
sification algorithms to solve various software engineering
problems. We highlight some of them below. Tian et al.
propose an automated approach based on machine learning
that recommends a priority level to a bug report based on
multiple influencing factors [31]. Menzies et al. presents an
automated method named SEVERIS (SEVERity ISsue assess-
ment), which assists test engineers in assigning severity levels

to defect reports [22]. Lamkanfi et al. extend Menzies et
al.’s work by proposing another text mining approach which
analyzes textual descriptions of bug reports and predict coarse-
grained bug severity levels with more accuracy [20]. Zhang et
al. investigate 7 composite algorithms, which integrate multiple
machine learning classifiers, to improve cross-project defect
prediction [47].

VI. CONCLUSION AND FUTURE WORK

In order to predict configuration bugs, we propose an
automated tool EFSPredictor which combines multiple feature
selection techniques and a classification algorithm to build a
statistical prediction model from historical bug reports. We
investigate 5 feature selection techniques, namely ChiSquare,
Filtered, GainRatio, OneR, Relief, and evaluate EFSPredictor
on 5 open source projects including a total of 3,203 bug
reports. The experiment results show that our proposed tool
EFSPredictor performs much better than the state-of-the-art
approach by Xia et al. Across the 5 projects, the F1-scores
of EFSPredictor outperform those of Xia et al’s approach by
20%, 7%, 10%, 10% and 20%, with an average of 14%.

In the future, we intend to investigate more bug reports
from more projects to reduce the threats to external validity
further. We also plan to design additional solutions that can
help boost the effectiveness of EFSPredictor further.
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