
AnswerBot: Automated Generation of Answer
Summary to Developers’ Technical Questions

Bowen Xu∗§, Zhenchang Xing†, Xin Xia‡∗
√

, David Lo§
∗College of Computer Science and Technology, Zhejiang University, China

†School of Engineering and Computer Science, Australian National University, Australia
‡Department of Computer Science, University of British Columbia, Canada
§School of Information Systems, Singapore Management University, Singapore

bowenxu.2017@phdis.smu.edu.sg, Zhenchang.Xing@anu.edu.au, xxia02@cs.ubc.ca, davidlo@smu.edu.sg

Abstract—The prevalence of questions and answers on domain-
specific Q&A sites like Stack Overflow constitutes a core knowl-
edge asset for software engineering domain. Although search
engines can return a list of questions relevant to a user query
of some technical question, the abundance of relevant posts and
the sheer amount of information in them makes it difficult for
developers to digest them and find the most needed answers to
their questions. In this work, we aim to help developers who
want to quickly capture the key points of several answer posts
relevant to a technical question before they read the details
of the posts. We formulate our task as a query-focused multi-
answer-posts summarization task for a given technical question.
Our proposed approach AnswerBot contains three main steps
: 1) relevant question retrieval, 2) useful answer paragraph
selection, 3) diverse answer summary generation. To evaluate our
approach, we build a repository of 228,817 Java questions and
their corresponding answers from Stack Overflow. We conduct
user studies with 100 randomly selected Java questions (not in
the question repository) to evaluate the quality of the answer
summaries generated by our approach, and the effectiveness of
its relevant question retrieval and answer paragraph selection
components. The user study results demonstrate that answer
summaries generated by our approach are relevant, useful and
diverse; moreover, the two components are able to effectively
retrieve relevant questions and select salient answer paragraphs
for summarization.

Index Terms—Summary generation, question retrieval

I. INTRODUCTION

Answers on Stack Overflow have become an important
body of knowledge for solving developers’ technical questions.
Typically, developers formulate their questions as a query to
some search engine, and the search engine returns a list of
relevant posts that may contain answers. Then, developers
need to read the returned posts and digest the information
in them to find the answers to their questions. Information
seeking is rendered difficult by the sheer amount of questions
and answers available on the Q&A site.

We survey 72 developers in two IT companies (i.e., Heng-
tian and Insigma Global Service) with two questions: (1)
whether you need a technique to provide direct answers when
you post a question/query online and why? and (2) what
is your expectation of the automatically generated answers,
e.g., must the answers be accurate? All the developers agree
√

Corresponding author.

that they need some automated technique to provide direct
answers to a question/query posted online. The reasons they
give include (1) sometimes it is hard to describe the problem
they meet, so some hints would be useful, (2) there is too
much noisy and redundant information online, (3) the answers
in long posts are hard to find, and (4) even the answer they
found may cover only one aspect of the problem. Developers
expect the answer generation tool to provide a succinct and
diverse summary of potential answers, which can help them
understand the problem and refine the queries/questions.

Our survey reveals a great need to provide improved tech-
niques for information retrieval and exploration. In this work,
we aim to develop an automated technique for generating
answer summary to developers’ technical questions, instead
of merely returning answer ports containing answers. Many
developers’ technical questions are non-factoid questions [1],
for example, what are differences between HashTable and
HashMap?, How do I write logs and display them realtime
in Java Swing? For such non-factoid technical questions,
multiple sparse and diverse sentences may make up the answer
summary together.

We formulate our task as a query-focused multi-answer-
posts summarization task for a given input question. This
task is closely related to question answering task [2], [3],
[4], which aims to find information from a huge text base
to answer a question. An answer summary from the text base
should provide related information with respect to the query
question. However, the answer sentences and the query ques-
tion are highly asymmetric on the information they convey.
They may not share lexical units. Instead, they may only be
semantically related (see examples in Table I and Table II).
The inherent lexical gap between the answer sentences and
the questions imposes a major challenge for the non-factoid
question answering task.

To tackle this challenge, we develop a three-stage frame-
work to achieve the goal of generating an answer summary
for a non-factoid technical question. In the first stage, we
retrieve a set of relevant questions based on the question titles’
relevance to a query question. The question titles and the
query question are “parallel text” whose relevance is easier to
determine. However, the question titles and the query question
often still have lexical gaps. Inspired by the recent success of

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Technical Research

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

706

word embeddings in handling document lexical gaps [5], we
learn word embeddings from a large corpus of Stack Overflow
posts to encode the question titles and the query question and
measure their relevance.

In the second stage, we collect all the answers of the rele-
vant questions retrieved in the first stage. We extract answer
paragraphs from the collected answers. We develop a multi-
criteria ranking method to select a small subset of relevant and
salient answer paragraphs for summarization, based on query-
related, user-oriented, and paragraph content features. In the
third stage, given a set of answer paragraphs to be summarized,
the generated answer summary needs to cover as much diverse
information as possible. To generate a diverse summary, we
measure novelty and diversity between the selected answer
paragraphs by Maximal Marginal Relevance (MMR) [6].

We build a question repository of 228,817 Java questions
and their corresponding answers from Stack Overflow. We
randomly select another 100 Java questions as query questions
and use our approach to generate an answer summary for
each query question. Our user studies confirm the relevance,
usefulness and diversity of the generated summary, and the
effectiveness of our approach’s relevant question retrieval and
answer paragraphs selection components. Our error analysis
identifies four main challenges in generating high-quality an-
swer summary: vague queries, lexical gap between query and
question description, missing long code-snippet answers, and
erroneous answer paragraph splitting, which reveal the future
enhancements of our automated answer generation technique.

The main contributions of this paper are the following:
• We conduct a formative study to assess the necessity of

automated question answering techniques to provide answer
summary to developers’ technical questions.

• We formulate the problem of automated question answering
as a query-focused multi-answer-posts summarization task
for an input technical question.

• We propose a three-stage framework to solve the task, i.e., 1)
relevant question retrieval, 2) answer paragraphs selection,
3) answer summary generation.

• We conduct user studies to evaluate the effectiveness of our
approach and its components, and identify several areas for
future improvements.

Paper Organization. Section II presents our formative study
for automated question answering. Section III describes our
approach. Section IV reports our experimental methods and
results. Section V analyzes the strengths and improvements
of our approach and discusses threats to validity of our
experiments. Section VI reviews related work. Section VII
concludes our work and presents future plan.

II. FORMATIVE STUDY OF ANSWER SUMMARY

We contacted 120 developers by emails in two IT com-
panies. We received 72 replies which help us understand
the developers’ difficulties in the current information retrieval
(IR) practice and assess the necessity of automated question
answering techniques. Some comments we received are listed
as follows:

• “Google will return a number of “relevant” links for a query,
and I have to click into these links, and read a number of
paragraphs ... It is really time-consuming ... Some links even
contain viruses. A tool which generates potential answers can
save my time wasted on reading a lot of irrelevant content. If
the generated answer accurately solves my question, it is good.
But I think it would be difficult. Anyway, I believe it is no harm
to use an answering tool, at least I can get some hints to solve
my problem.”

• “Sometimes I cannot accurately describe my questions, which
made it hard to find the answer. I have to browse a number of
posts online to learn how to refine my query, and search again.
Thus, I expect that the answer generation tool can help me
understand the information space better, so I can refine my
query faster without browsing those noisy posts.”

• “I notice even the best answers in Stack Overflow often answer
the questions only in one aspect. Sometimes I need to know a
diversity of aspects to understand the problem better, but they
cannot be found in a single best answer. Thus, I expect the tool
should provide a diversity of potential answers, even if some
answers are not accurate. ”

• “... Some questions received too many long answers, and many
of these answers have redundant content. I expect the answer
generation tool should return succinct answers which covers
many aspects of potential solutions. So I could have a high-
level understanding of the question I posted. ”

• “Even if the accuracy of the tool is only 10%, I will still use
it. In the worst case, I will use your tool first, and then search
on Google again to find the solutions.”

We use a real-world example to illustrate the difficul-
ties mentioned in the developers’ replies and the desirable
properties of automated answer generation tool. Assume a
developer was interested in the differences between HashMap
and HashTable in Java. He used Google to search for Stack
Overflow posts and Table I lists the top 5 ranked Stack
Overflow questions returned by Google. The question titles
are very relevant to the developer’s information need and he
should be able to find the needed information in the answers
to these questions. However, information overload can be
detrimental to the developer. There are 51 answers which have
6,771 words in total. Reading all these answers may take 30
minutes (based on the average readers’ reading speed of 200
words per minute [7]). Even just reading the best answers
(i.e., the accepted answers) or top-voted answers may still take
some time.

It would be desirable to have a answer summary extracted
from the answers to the top 5 ranked questions, as the one
shown in Table II. This answer summary helps the developer
quickly capture the key points of the answers relevant to his
technical question. These points reveal the salient and diverse
differences between HashMap and HashTable. They may help
the developer decides which API is more appropriate for his
task, or provide information scents for guiding the developer
performing further search or learning [8].

However, manually generating this answer summary is not
an easy task. First, there is much low-quality and irrelevant
information [9]. Table III shows two examples (eight answers
in total). The first example discusses HashMap and HashTable
in C. The second example discusses how to answer HashMap
and HashTable related interview questions. These answers are
valid in a particular questions context, but have nothing to do
with the developer’s technical question.

Another issue is information redundancy. As shown in

707

TABLE I
THE TOP 5 RANKED STACK OVERFLOW QUESTIONS BY GOOGLE SEARCH ENGINE FOR THE QUERY “DIFFERENCES HASHMAP HASHTABLE JAVA”

No. Question Id Title #Answers #Words
1 40471 Differences between HashMap and Hashtable? 37 4135
2 8875680 Difference between Hashtable and Collections.synchronizedMap(HashMap) 5 847
3 36313817 What are the differences between hashtable and hashmap? (Not specific to Java) 3 747
4 32274953 Difference between HashMap and HashTable purely in Data Structures 3 565
5 30110252 What are the differences between Hashmap vs Hashtable in theory? 3 477

TABLE II
DESIRABLE ANSWER SUMMARY WITH RELEVANT, SALIENT AND DIVERSE INFORMATION

No. Answer Id Content Aspect
1 764418 HashMap is non synchronized whereas Hashtable is synchronized. Synchronization/Thread Safety
2 25526024 Hashmap can store one key as null. Hashtable can’t store null. Null Keys/ Null Values

3 22491742 Second important difference between Hashtable and HashMap is performance,
since HashMap is not synchronized it perform better than Hashtable. Performance

4 16018266 HashTable is a legacy class in the jdk that shouldn’t be used anymore. Evolution History

5 20519518 Maps allows you to iterate and retrieve keys, values, and both key-value
pairs as well, Where HashTable don’t have all this capability. Iteration

TABLE III
EXAMPLES OF IRRELEVANT AND LOW-QUALITY ANSWER PARAGRAPHS

No. Type Answer Id Example

1 Irrelevant 42003464
The explaination between hashmap and hashtable is quite correct as it also fits to the header of a string
hash map implementated in strmap. c where thestringmap is a hashtable for strings satisfying the properties
of a key,value-structure. Here it says : /...code.../

3 Low-quality 36325577

The interviewer may have been looking for the insight that.
A hash table is a lower-level concept that doesn’t imply or necessarily support any distinction or separation of
keys and values...even if in some implementations they’re always stored side by side in
memory, e.g. members of the same structure / std::pair<>...

TABLE IV
REDUNDANT ANSWER PARAGRAPHS

Aspect Set of Redundant Answers’ Id Example
40512,
30108941,

40878,
42622789,

764418,
10372667,

39785829,
20519518, [764418] HashMap is non synchronized whereas Hashtable is synchronized.

Synchronization/
Thread Safety

17815037,
34618895,

28426488,
41454,

27293997,
25348157,

8876192,
22084149,

[40512] Hashtable is synchronized, whereas HashMap isn’t. That makes
Hashtable slower than Hashmap.

8876289,
14452144,

8876205,
25526024,

42315504,
11883473 22491742, [39785829] HashTable is internally synchronized. Whereas HashMap

is not internally synchronized.
40878, 7644118, 40548, 10372667, [25526024] Hashmap can store one key as null. Hashtable can’t store null.

Null Keys/
Null Values

39785829,
20519518,

14452144,
25526024,

17815037,
34618895,

28426488,
42622789,

[40878] Hashtable does not allow null keys or values. HashMap allow sone
null key and any number of null values.

25348157, 30108941 [10372667] HashTable can only contain non-null object as a key or as a value.
HashMap can contain one null key and null values.

13797704, 40848, 30108941, 39785829, [40848] For threaded apps, you can often get away with ConcurrentHashMap-
depends on your performance requirements.

Performance 22491742, 34618895, 28426488, 24583680 [22491742] Second important difference between Hashtable and HashMap is
performance, since HashMap is not synchronized it perform better than Hashtable.
[34618895] As HashMap is not synchronized it is faster as compared to Hashtable.

1041798, 22629569, 40522, 10372667, [16018266] HashTable is a legacy class in the jdk that shouldn’t be used anymore.

Evolution History 30108941, 39785829, 16018266, 14627155, [39785829] HashMap extends AbstractMap class where as HashTable extends
Dictionary class which is the legacy class in java.

34618895, 42315504 [42315504] Second difference is HashMap extends Map Interface and whether
HashSet Dictionary interface.

40878,
7344090,

7644118,
41454,

8832544,
10372667,

40483,
30108941,

[30108941] Iterating the values: Hashmap object values are iterated by using iterator.
HashTable is the only class other than vector which uses enumerator to iterate the
values of HashTable object.

Iteration 39785829, 20519518, 14452144, 34618895, [20519518] Maps allows you to iterate and retrieve keys, values, and both key-value
pairs as well, Where HashTable don’t have all this capability.

42622789 [42622789] Iterator in HashMap is fail-fast. Enumerator in Hashtable is not fail-fast.

Table IV, the same aspect may be mentioned in many answer
posts. The information redundancy and diversity creates a
dilemma for the developer. If he reads every post, he is likely
to come across the same information again and again, which
is a waste of time. If he skips some posts, he risks missing
some important aspects he has not seen. Reading only the best
answers can address the information overload issue, but not the
information redundancy and diversity. For example, the best
answer1 to the 1st ranked question in Table I discusses only
three aspects (Synchronization or Thread Safety, Null Keys and
Null Values, and Iteration) listed in Table II. To tackle the

1http://stackoverflow.com/a/40878

above information relevance, redundancy and diversity issues
for finding answers to developers’ technical questions, we need
an effective technique to generate an answer summary with
relevant, salient and diverse information from unstructured text
of answer posts.

III. PROPOSED APPROACH

As shown in Figure 1, our approach (called AnswerBot)
takes as input a software-engineering-related technical ques-
tion as a query from the user, and produces as output an
answer summary for the question. Next, we describe the three
components of our approach, i.e., relevant question retrieval,

708

http://stackoverflow.com/questions/40471/differences-between-hashmap-and-hashtable
http://stackoverflow.com/questions/8875680/
http://stackoverflow.com/questions/36313817/
http://stackoverflow.com/questions/32274953/
http://stackoverflow.com/questions/30110252/
http://stackoverflow.com/a/764418/
http://stackoverflow.com/a/25526024/
http://stackoverflow.com/a/22491742/
http://stackoverflow.com/a/16018266/
http://stackoverflow.com/a/20519518/
http://stackoverflow.com/a/42003464/
http://stackoverflow.com/a/36325577/
http://stackoverflow.com/a/40512/
http://stackoverflow.com/a/30108941/
http://stackoverflow.com/a/40878/
http://stackoverflow.com/a/42622789/
http://stackoverflow.com/a/764418/
http://stackoverflow.com/a/10372667/
http://stackoverflow.com/a/39785829/
http://stackoverflow.com/a/20519518/
http://stackoverflow.com/a/764418/
http://stackoverflow.com/a/17815037/
http://stackoverflow.com/a/34618895/
http://stackoverflow.com/a/28426488/
http://stackoverflow.com/a/41454/
http://stackoverflow.com/a/27293997/
http://stackoverflow.com/a/25348157/
http://stackoverflow.com/a/8876192/
http://stackoverflow.com/a/22084149/
http://stackoverflow.com/a/40512/
http://stackoverflow.com/a/8876289/
http://stackoverflow.com/a/14452144/
http://stackoverflow.com/a/8876205/
http://stackoverflow.com/a/25526024/
http://stackoverflow.com/a/42315504/
http://stackoverflow.com/a/11883473/
http://stackoverflow.com/a/22491742/
http://stackoverflow.com/a/39785829/
http://stackoverflow.com/a/40878/
http://stackoverflow.com/a/7644118/
http://stackoverflow.com/a/40548/
http://stackoverflow.com/a/10372667/
http://stackoverflow.com/a/25526024/
http://stackoverflow.com/a/39785829/
http://stackoverflow.com/a/20519518/
http://stackoverflow.com/a/14452144/
http://stackoverflow.com/a/25526024/
http://stackoverflow.com/a/17815037/
http://stackoverflow.com/a/34618895/
http://stackoverflow.com/a/28426488/
http://stackoverflow.com/a/42622789/
http://stackoverflow.com/a/40878/
http://stackoverflow.com/a/25348157/
http://stackoverflow.com/a/30108941/
http://stackoverflow.com/a/10372667/
http://stackoverflow.com/a/13797704/
http://stackoverflow.com/a/40848/
http://stackoverflow.com/a/30108941/
http://stackoverflow.com/a/39785829/
http://stackoverflow.com/a/40848/
http://stackoverflow.com/a/22491742/
http://stackoverflow.com/a/34618895/
http://stackoverflow.com/a/28426488/
http://stackoverflow.com/a/24583680/
http://stackoverflow.com/a/22491742/
http://stackoverflow.com/a/34618895/
http://stackoverflow.com/a/1041798/
http://stackoverflow.com/a/22629569/
http://stackoverflow.com/a/40522/
http://stackoverflow.com/a/10372667/
http://stackoverflow.com/a/16018266/
http://stackoverflow.com/a/30108941/
http://stackoverflow.com/a/39785829/
http://stackoverflow.com/a/16018266/
http://stackoverflow.com/a/14627155/
http://stackoverflow.com/a/39785829/
http://stackoverflow.com/a/34618895/
http://stackoverflow.com/a/42315504/
http://stackoverflow.com/a/42315504/
http://stackoverflow.com/a/40878/
http://stackoverflow.com/a/7344090/
http://stackoverflow.com/a/7644118/
http://stackoverflow.com/a/41454/
http://stackoverflow.com/a/8832544/
http://stackoverflow.com/a/10372667/
http://stackoverflow.com/a/40483/
http://stackoverflow.com/a/30108941/
http://stackoverflow.com/a/30108941/
http://stackoverflow.com/a/39785829/
http://stackoverflow.com/a/20519518/
http://stackoverflow.com/a/14452144/
http://stackoverflow.com/a/34618895/
http://stackoverflow.com/a/20519518/
http://stackoverflow.com/a/42622789/
http://stackoverflow.com/a/42622789/
http://stackoverflow.com/a/40878

useful answer paragraphs selection, and diverse answer sum-
mary generation.

A. Relevant Question Retrieval

The relevant question retrieval component takes a technical
question as an input query q and ranks all questions Q in
a large question repository (e.g., questions from Q&A sites
like Stack Overflow). The questions that are ranked at the top
are more likely to have answers that can answer the input
technical question. We combine word embedding technique
and traditional IDF metric to measure the relevance between
the input query and the questions in the repository. Word
embedding has been shown to be robust in measuring text
relevance in the presence of lexical gap [10]. IDF metric helps
to measure the importance of a word in the corpus.

To train the word embedding model and compute the word
IDF metrics, we build a domain-specific text corpus using the
question title and body of Stack Overflow questions. Each
question is considered as a document in the corpus. As the
text is from the website, we follow the text cleaning steps
commonly used for preprocessing web content [11]. We pre-
serve textual content but remove HTML tags. We remove long
code snippets enclosed in HTML tag 〈pre〉, but not short code
fragments in 〈code〉 in natural language paragraphs. We use
software-specific tokenizer [12] to tokenize the sentence. This
tokenizer can preserve the integrity of code-like tokens and the
sentence structure. We use Gensim (a Python implementation
of the word2vec model [13]) to learn the word embedding
model on this domain-specific text corpus. To compute the
word IDF metrics, we build a vocabulary from the text corpus
by removing stop words based on the list of stop words for
English text2 and using a popular stemming tool [14] to reduce
each word to its root form. We then compute the IDF metric
of each word in the vocabulary over the text corpus.

Given a query q and the title of a question Q in the
repository, our relevance calculation algorithm computes their
relevance based on an IDF-weighted word embedding similar-
ity between the query and the question title. We use question
title in relevance calculation because query and question title
are “parallel text” [15]. The query and the question title are
transformed into a bag of words, respectively, following the
same text preprocessing steps described above. Let Wq be
the bag of words for the query q and WQ be the bag of
words for the title of the question Q. An asymmetric relevance
rel(Wq →WQ) is computed as:

rel(Wq →WQ) =

∑
wq∈Wq

rel(wq,WQ) ∗ idf(wq)∑
wq∈Wq

idf(wq)
(1)

where idf(wq) is the IDF metric of the word wq , rel(wq,WQ)
is maxwQ∈WQ

rel(wq, wQ), and rel(wq, wQ) is the cosine
similarity of the two word embeddings wq and wQ. Intuitively,
the word embedding similarity of a more important word in the
query and the words in the question title carries more weight
towards the relevance measurement between the query and

2http://snowball.tartarus.org/algorithms/english/stop.txt

the question title. An asymmetric relevance rel(WQ → Wq)
is computed in the same way. Then, the symmetric relevance
between the query q and the question Q is the average of
the two asymmetric relevance between Wq and WQ, i.e.,
rel(q,Q) = (rel(Wq →WQ) + rel(WQ →Wq))/2.

Based on the symmetric relevance between the query and
each question in the repository, the questions in the repository
are ranked and the top N ranked questions are returned as the
relevant questions for the query.

B. Useful Answer Paragraphs Selection

Given a ranked list of relevant questions, all the answer
paragraphs (split by HTML tag 〈p〉) in the answers to these
questions are collected. We decide to use the granularity of
answer paragraphs because they are the logical text units that
answerers create when writing the posts. To select relevant and
salient answer paragraphs for summarization, our approach
ranks answer paragraphs based on three kinds of features,
i.e., query related features, paragraph content features and user
oriented features.
Query related features measure the relevance between an
answer paragraph and the query.
• Relevance to query. As the query and the answer paragraphs

usually have lexical gap between the information they
convey, it is hard to directly measure their relevance. In
this work, we set the relevance between a query and an
answer paragraph as the relevance between the query and
the question from which the answer paragraph is extracted.3

The underlying intuition is that the more relevant the
question is to the query, the more likely the answers to
the question contain relevant answer paragraphs.

• Entity overlap. If an answer paragraph contains software-
specific entities mentioned in the query, it is very likely
that the paragraph is relevant to the query. For exam-
ple, all desirable answer paragraphs in Table II con-
tain HashMap and/or HashTable mentioned in the query.
Software-specific entities can be programming languages,
libraries/frameworks, APIs, data format, and domain-
specific concepts [12]. In this work, we consider tags and
tag synonyms on Stack Overflow as entities. We identify
entity mentions in a query or answer paragraph by matching
words in the query or answer paragraph with tag names
and tag synonyms. Let Eq and Eap be the set of entities
mentioned in the query and the answer paragraph, respec-
tively. The entity overlap between the query and the answer
paragraph is computed as |Eq

⋂
Eap| / |Eq| (|Eq| 6= 0). If

the query does not mention any entities (|Eq| = 0), we set
entity overlap at 0.

Paragraph content features measure the salience of an
answer paragraph’s content.
• Information entropy. Salient answer paragraphs would con-

tain high-entropy words. A word with higher IDF metric
indicates that the word is less common in the corpus (i.e.,

3The relevance between the query and question is calculated during the
relevant question retrieval process – see Section III-A.

709

http://snowball.tartarus.org/algorithms/english/stop.txt

Questions

Query

Text	Corpus

Question

Bag-of-Words Relevance	
Calculation	
Algorithm

Word	

Embedding

Word2vec	
Model

Ranked	List	of	
Relevant	
Questions

Collecting	Answer	

Paragraphs

Candidate	
Answer	

Paragraphs

Query	Related	

Features

User	Oriented	

Features

Paragraph	Content	

Features

Select	Diverse	

Paragraph by	MMR

Ranked	List	of	
Candidate	Answer	

Paragraphs

Answer	

Summary

Text

Preprocessing

Word	IDF	

Vocabulary

Offline	Processing

Query	

Bag-of-Words

Ranked	by	Score

Build	IDF

Vocabulary

Relevant	Question	
Retrieval

Useful	Answer	
Paragraphs	Selection

Diverse	Answer	
Summary	Generation	

Fig. 1. The Framework of Our Approach AnswerBot

TABLE V
SEMANTIC PATTERNS FOR SALIENT INFORMATION

No. Pattern No. Pattern
1 Please check XX 7 In short, XX
2 Pls check XX 8 The most important is XX
3 You should XX 9 I’d recommend XX
4 You can try XX 10 In summary, XX
5 You could try XX 11 Keep in mind that XX
6 Check out XX 12 I suggest that XX

higher entropy). Thus, we sum the IDF metrics of words
(after removing stop words and stemming) in a paragraph to
represent the paragraph’s entropy. Using this feature, many
paragraphs with low information entropy, e.g., “I cannot
agree more.”, will be filtered out.

• Semantic patterns. We observe that there are certain sen-
tence patterns that often indicate recommendation or sum-
marization of salient information in Stack Overflow discus-
sions (see Table V for examples). For example, a question
on Stack Overflow asks “Array or List in Java. Which is
faster?”. The best answer to this question is “I suggest that
you use a profiler to test which is faster.”. In this work,
we summarize 12 sentence patterns based on our empirical
observations of 300 randomly selected best answers on
Stack Overflow. If an answer paragraph contains at least
one of the sentence patterns, we set the paragraph’s pattern
value at 1, otherwise 0.

• Format patterns. We observe that HTML tags are often
used to emphasize salient information in the discussions.
For example, 〈strong〉 highlights some text by bold font
and 〈strike〉 points out some incorrect information. If an
answer paragraph contains such HTML tags, we set its
format pattern score at 1, otherwise 0.

User oriented features select summary and high-quality
answer paragraphs based on user behavior patterns.

• Paragraph position. We observe that when answerers write
answer posts, they usually start with some summary infor-
mation and then go into details. For example, a question
asks “How do I compare strings in Java?”, The first three

paragraphs of the best answer of this question present “==
for reference equality”, “.equals() for value equality”, and
“Objects.equals() checks for nulls”. Therefore, we set a
paragraph’s summary value to be inversely proportional
to the paragraph’s position in the post for the first m
paragraphs, i.e., summary = 1/pos (1 ≤ pos ≤ m)
(m = 3 in our current implementation). The summary
values of the subsequent (beyond the mth) paragraphs are
set at 0.

• Vote on answer. Answers with higher vote indicate that the
community believes that they contain high-quality informa-
tion to answer the corresponding question. In this work, we
set an answer paragraph’s vote as the vote on the answer
post from which the paragraph is extracted.
Based on the above seven features, an overall score is

computed for each answer paragraph by multiplying the nor-
malized value of each feature. To avoid the feature scores
being 0, all the feature scores are normalized to (0,1] by
adding a smooth factor 0.0001 [16]. Answer paragraphs are
ranked by their overall scores and the top M ranked answer
paragraphs are selected as candidate answer paragraphs for
summarization.

C. Diverse Answer Summary Generation
As shown in Table IV, there are often many redundant

answer paragraphs from the answers to relevant questions.
The generated answer summary should avoid such redundant
information. Given a list of candidate answer paragraphs, max-
imal marginal relevance (MMR) algorithm is used to select a
subset of answer paragraphs in order to maximize novelty and
diversity between the selected answer paragraphs [6]. MMR
first builds a similarity matrix between each pair of candidate
answer paragraphs. The similarity is computed as the symmet-
ric relevance between the two answer paragraphs as described
in Section III-A. It then iteratively selects K candidate answer
paragraphs with maximal marginal relevance. The selected
answer paragraphs form an answer summary to the user’s
technical question.

710

http://stackoverflow.com/questions/716597/
http://stackoverflow.com/questions/716597/
http://stackoverflow.com/a/716619/
http://stackoverflow.com/a/716619/
http://stackoverflow.com/questions/513832

IV. EXPERIMENTS & RESULTS

We conduct three user studies to answer the following three
research questions, respectively:
RQ1 How effective is our approach in generating answer

summaries with relevance, useful and diverse information
for developers’ technical questions?

RQ2 How effective is our approach’s relevant question re-
trieval component?

RQ3 How effective is our approach’s answer paragraph se-
lection component?

In this section, we first describe our repository of questions
and answers and tool implementation. We then describe our
experimental query questions, and how we select participants
and allocate tasks in our user studies. Finally, we elaborate
the motivation, approach and results for the three research
questions.

A. Question Repository and Tool Implementation

We collect 228,817 Java questions (i.e., questions tagged
with Java) and their corresponding answers from Stack Over-
flow Data Dump of March 2016. These questions have at
least one answer. To ensure the quality of question repository,
we require that at least one of the answers of the selected
questions is the accepted answer or has vote > 0. When
collecting questions, we avoid duplicate questions of the
already-selected questions, because duplicate questions discuss
the same question in different ways and can be answered
by the same answer. We use these Java questions and their
answers as a repository for answering Java-related technical
questions. We build a text corpus using the title and body of
these Java questions to train the word embedding model and
build the word IDF vocabulary. Considering the conciseness of
the generated answer summary and the fact that searchers tend
to browse only the top ranked search results [17], our current
implementation returns top 5 relevant questions for a query and
selects top 10 candidate answer paragraphs for summarization.
The generated answer summary contains 5 answer paragraphs.

B. Experimental Queries

We randomly select another 100 questions4 and use the
titles of these questions as query questions. We ensure that our
question repository does not contain these 100 query questions
and their duplicate questions. The randomly selected 100 query
questions cover a diversity of aspects of Java programming.
For example, some of them are related to language features,
such as multi-threading (e.g., How does volatile actually
work?) and I/O (e.g., Can BufferedReader read bytes?), while
others are related to many third-party libraries, such as TEST-
Assertions (e.g., Testing API which returns multiple values
with JUnit) and REST (e.g., Is there an equivalent to ASP.NET
WEB API in JAVA world?). Some of the query questions are
easy to answer (e.g., How to convert String into DateFormat
in java?), while others are difficult (e.g., How does volatile
actually work?). The diversity of these 100 questions can

4See our replication package at http://bit.ly/2qBEUhi

TABLE VI
TASK ALLOCATION TO PARTICIPANTS

RQs Group 1 (P1, D1, D2, D3) Group 2 (P2, D4, D5, D6)
RQ1 Q1-Q50 Q51-Q100
RQ2 Q51-Q100 Q1-Q50
RQ3 Q51-Q100 Q1-Q50

improve the generality of our study, and reduce the bias that
our approach might be only effective for a specific type of
questions. We index these 100 questions as Q1 to Q100.

C. Participant Selection and Task Allocation

We recruited participants through our school’s mailing lists
and select 2 postdoctoral fellows (P1 and P2) and 6 PhD
students (D1 to D6) to join our user study. All the selected
participants have industrial experience on Java development,
and they have used Java to develop commercial projects in
their work before they went to graduate school. The years of
their working experience on Java are vary from 2 to 8 years,
with an average 4.6 years. The diversity of these participants’
working experience on Java can improve the generality of
our results. In practice, our tool aims to help all levels of
developers, from novice to senior developers. During our user
study, no participants report being unable to understand the
query questions and answers.

We divided the eight participants into two groups, i.e.,
P1, D1, D2 and D3 in Group1 and P2, D4, D5 and D6
in Group2. Furthermore, we divided the 100 questions into
two tasks, i.e., Q1-Q50 in Task1 and Q51-Q100 in Task2.
Table VI present the task allocation to the two participant
groups. For RQ1, Group1 worked on Task1 questions, while
Group2 worked on Task2 questions. For RQ2 and RQ3,
Group1 worked on Task2 questions, while Group2 worked on
Task1 questions. All four participants in these two groups were
required to review the answers of the assigned 50 questions
independently. With this task allocation, we have all 100 query
questions evaluated for the three research questions. As RQ1
evaluates the overall performance of our approach, and RQ2
and RQ3 evaluates its components, using the same set of
query questions to evaluate RQ1 and RQ2/RQ3 may bias the
participants’ results. However, since RQ2 and RQ3 evaluates
the two components independently and the two components
deal with completely different input/output, using the same
questions would have little impact on the participants’ results.
We asked the participants to complete the study in three 2-hour
sessions; the first session evaluates RQ1, while the second and
third evaluate RQ2 and RQ3 respectively.

D. Research Questions

RQ1: Effectiveness of the overall approach and the rele-
vance, usefulness and diversity of answer summary
Motivation. In the current IR practice, developers retrieve
relevant questions by entering their technical questions to a
search engine. Then they have to manually browse the answers
of the returned relevant questions to find the needed infor-
mation. In contrast, our approach can automatically generate
an answer summary of the key points in the answers of the
returned relevant questions. We would like to investigate the

711

http://stackoverflow.com/questions/2694439/
http://stackoverflow.com/questions/2694439/
http://stackoverflow.com/questions/22216398/
http://stackoverflow.com/questions/6243242/
http://stackoverflow.com/questions/6243242/
http://stackoverflow.com/questions/23057456/
http://stackoverflow.com/questions/23057456/
http://stackoverflow.com/questions/23218025/how-to-convert-string-into-dateformat-in-java
http://stackoverflow.com/questions/23218025/how-to-convert-string-into-dateformat-in-java
http://stackoverflow.com/questions/2694439/
http://stackoverflow.com/questions/2694439/
http://bit.ly/2qBEUhi

overall performance of our approach in terms of the relevance,
usefulness and diversity of the generated summary, compared
with manual information seeking.
Approach. We compare our approach against two baselines
built based on Google search engine and Stack Overflow
search engine, respectively. We add “site:stackoverflow.com”
to the query of Google search engine so that it searches only
posts on Stack Overflow. For a query question, we use the first
ranked Stack Overflow question returned by a search engine
as the most relevant question. We assume that a developer
would read the best answer (i.e., the accepted answer) or
the answer with the highest vote if there is no accepted
answer of the relevant question. We refer to the collected
best or highest-vote answer of the two baseline approaches as
the Baseline Google answer summary and the Baseline SO
answer summary, respectively.

For each query question, we provide the participants the
answer summary generated by Baseline Google, Baseline SO
and our approach, respectively. The participants do not know
which answer summary is generated by which approach. They
are asked to score the three answer summaries from three
aspects, i.e., relevance, usefulness and diversity. Relevance
refers to how relevant the generated summary is to the query.
Usefulness refers to how useful the generated summary is for
guiding the developer’s further search or learning. Diversity
refers to whether the generated summary involves diverse
aspects of information. The score is a 5 point likert scale,
with 1 being “Highly Irrelevant/Useless/Identical” and 5 being
“Highly Relevant/Useful/Diverse”.
Results. Table VII shows the mean of relevance, usefulness
and diversity scores of our approach and the two baselines. The
result shows that our approach achieves the best performance
in all three aspects, while the Baseline SO achieves the
worst performance. Our approach and Baseline Google have
comparable relevance score, but our approach has higher score
in usefulness and diversity, especially diversity. The average
number of paragraphs in Baseline Google and Baseline SO
answer summaries are 4.18 and 4.09, respectively.

We use Wilcoxon signed-rank test [18] to evaluate whether
the differences between our approach and the baseline ap-
proaches are statistically significant. The improvement of our
approach over the Baseline SO is statistically significant on all
three aspects at the confidence level of 99.9%. The improve-
ment of our approach over the Baseline Google on usefulness
and diversity is statistically significant at the confidence level
of 95%. We use the best answer of the most relevant question
returned by Google as the Baseline Google’s answer for the
query. Considering the Google’s capability, it is not surprising
the difference in relevance is not statistically significant.
However, our approach achieves statistically significant better
performance on usefulness and diversity (especially diversity).
This indicates that the best or highest-vote answers may not
cover as diverse information as the developers need. Therefore,
it is worth reading more answer posts to summarize more com-
plete information. Our approach automates this summarization
process for a diversity of answers.

TABLE VII
MEAN OF RELEVANCE, USEFULNESS AND DIVERSITY OF OUR APPROACH

AND THE BASELINE APPROACHES (RQ1)
Relevance Usefulness Diversity

Our Approach 3.450 3.720 3.830
Baseline Google 3.440 3.480* 2.930***

Baseline SO 2.576*** 2.712*** 2.305***
***p<0.001, **p<0.01, *p<0.05

RQ2: The Effectiveness of relevant question retrieval
Motivation. An answer summary is generated from the an-
swers of some questions relevant to a query question. If the
retrieved questions are not relevant to the query question, it
is unlikely to generate a high-quality answer summary for
the query question. Our question retrieval approach combines
word embeddings with traditional IDF metrics. We would
like to investigate the effectiveness of our method, compared
with the traditional TF-IDF based methods and other word- or
document-embedding based methods.
Approach. We build three baseline approaches: TF-IDF based
IR [19], word-embedding based document retrieval [5], and
document-to-vector (Dov2Vec) based document retrieval [20].
TF-IDF is a traditional IR metric that is often used to rank a
document’s relevance to a user query in software engineering
tasks, such as question retrieval [21] and code search [22].
Yang et al. [5] average word embeddings of words in a
document to obtain a document vector which can be used to
measure document relevance. Dov2Vec learns document em-
beddings together with the underlying word embeddings using
a neural network and is also applied to measure document
relevance [20].

For each query question, we collect the top-10 ranked
questions retrieved by our question retrieval approach or one
of the baseline approaches. We ask the participants to identify
the relevant questions in the top-10 ranked questions. The
participants do not know which approach generates which list
of top-10 ranked questions. We use the following metrics in
comparison of different approaches.

Top-K Accuracy: Given a query question q, if at least one of
the top-k ranked questions is relevant, we consider the retrieval
to be successful, and set the value Success(q, top − k) to 1.
Otherwise, we consider the retrieval to be unsuccessful, and
set the value Success(q, top−k) to 0. Given a set of queries,
denoted as qs, its top-k accuracy Top@k is computed as:
Top@k(qs) =

∑
q∈qs Success(q, top-k)/|qs|. The higher the

top-k accuracy score is, the better a relevant question retrieval
approach ranks the first relevant question. In this paper, we
set k = 1, 5 and 10.

Mean Reciprocal Rank: Given a query question, its recip-
rocal rank is the multiplicative inverse of the rank of the first
relevant question in a ranked list of questions. Mean Recipro-
cal Rank (MRR) is the average of the reciprocal ranks of all
queries in a set of queries: MRR(qs) = 1

|qs|
∑

q∈qs
1

Rank(q) .
We denote qs as the set of queries. Rank(q) refers to the
position of the first relevant question in the ranked list of
questions returned by a relevant question retrieval approach for
a query. The higher the MRR is, the higher the first relevant
questions is ranked for a set of queries.

712

TABLE VIII
TOP@K ACCURACY AND MRR OF OUR APPROACH AND THE BASELINE

APPROACHES IN RELEVANT QUESTION RETRIEVAL (RQ2)
Top@1 Top@5 Top@10 MRR

Our Approach 0.460 0.610 0.660 0.520
Doc2Vec 0.180*** 0.580 0.650 0.335***

Word Embeddings 0.340* 0.520 0.550* 0.408*
TF-IDF 0.320* 0.490* 0.530** 0.388*

***p<0.001, **p<0.01, *p<0.05

Results. Table VIII shows the Top@k and MRR metrics of
our approach and the three baseline approaches for retrieving
relevant questions for the 100 query questions. We notice that
our approach achieves the best performance in all the evalu-
ated metrics, especially for Top@1 and MRR. The Doc2Vec
baseline achieves comparable performance as our approach
on Top@5 and Top@10, but it has the worst performance
on Top@1 and MRR. The word-embedding baseline performs
slightly better than the TF-IDF baseline in Top@k and MRR.
The differences between the three baseline approaches actually
indicate that the traditional TF-IDF based method and the word
or document-embedding based methods can complement each
other. In fact, our approach that combines word embeddings
and IDF metrics achieves the best performance than either
TF-IDF or word/document embedding alone.

We apply Wilcoxon signed-rank test to test the statistical
significance of the differences between our approach and
the baseline approaches. The improvement of our approach
over the TF-IDF baseline is statistically significant on all
the metrics at the confidence level of 95%. Compared with
the word-embedding and Doc2Vec baselines, our approach
is statistically significant better on Top@1 and MRR at the
confidence level of 95%. Although the differences between
our approach and the word-embeddings and Doc2Vec baselines
on Top@5 and Top@10 are not statistically significant, the
significantly better MRR indicates that our approach can rank
relevant questions higher than the other two baselines.

RQ3: The Effectiveness of answer paragraph selection
Motivation. To select the most relevant and salient answer
paragraphs for summarization, our approach considers three
types of features of answer paragraphs, i.e., query-related,
user-oriented and paragraph content features. We would like
to investigate the impact of different types of features on the
results of answer paragraphs selection.
Approach. We remove one type of features at a time from the
full feature set and reserve the other two types. Thus, three
baseline approaches are built, i.e., without (w/o) query-related
features, w/o user-oriented features, and w/o paragraph content
features. We let each approach output a ranked list of 10
answer paragraphs with the highest overall score. We take the
union of the 40 answer paragraphs selected by our approach
(with all features) and the three baselines. Participants are
asked to judge whether the selected paragraphs contain salient
information relevant to the query question. They do not know
which answer paragraph is selected by which approach. We
use Top@k accuracy and MRR in the top 10 ranked candidate
answer paragraphs to evaluate the performance of answer
paragraph selection with and without certain type of features.

TABLE IX
TOP@K ACCURACY AND MRR OF FEATURE ABLATION FOR ANSWER

PARAGRAPH SELECTION (RQ3)
Top@1 Top@5 Top@10 MRR

all features 0.660 0.990 1.000 0.803
w/o query related 0.610* 0.970 1.000 0.758**
w/o user oriented 0.500*** 0.980 1.000 0.699***

w/o paragraph content 0.570* 1.000 1.000 0.744**
***p<0.001, **p<0.01, *p<0.05

Results. Table IX presents Top@k and MRR metrics of using
all features or adopting certain type of features for answer
paragraph selection. Using all features achieves the best per-
formance in all metrics compared with adopting certain type
of features. This suggests that all types of features are useful
for answer paragraph selection. Using query-related features
achieves better performance than adopting the other two types
of features, and using user-oriented features achieves the worst
performance. This suggests that user-oriented features play the
most important role for answer paragraph selection, paragraph
content features take a second place, and query-related features
are relatively less important.

Wilcoxon signed-rank test shows that the improvement of
using all features over adopting certain type of features is
statistically significant on Top@1 and MMR at the confidence
level of 95%. Top@5 and Top@10 results in Table IX show
that there is almost always at least one relevant answer
paragraph in the top 5 or 10 ranked list of candidate answer
paragraphs. This demonstrates the general effectiveness of our
answer paragraph selection features. Therefore, the differences
between using all features and adopting certain type of features
on Top@5 and Top@10 are not statistically significant.

V. DISCUSSION

In this section, we qualitatively compare our question an-
swering approach with community question answering prac-
tice. We then discuss cases where our approach is ineffective,
followed by some threats to validity.

A. Comparison with Community Question Answering

In community question answering, developers post their
questions on a Q&A site like Stack Overflow and wait for
answers from the community of developers. To understand
the differences between the community-provided answers to a
technical question and the answer summary that our approach
generates from answers of relevant questions, we manually
compare the best answers of the questions we use as queries
and the answer summary that our approach generates for these
questions.

Table X presents two examples. The query question in
first example is “calculating time difference” in which the
developer runs into some errors in using getT ime() to
calculate time difference. The best answer of this question
suggests to use long to store getT ime()’s return value,
rather than casting it to int. For this query question, our
generated answer summary consists of five paragraphs from
the four answers of two relevant questions. Except for
the fifth paragraph “You can try this” (due to the limi-
tation of paragraph splitting, see Section V-B), the other

713

four paragraphs provide two alternative solutions (using
System.nanoT ime() or currentT imeMillis()) to calculate
time difference. They also describe the reason and cautions of
using the two APIs, such as System.nanoT ime() is more
precise, System.nanoT ime() must not be used as a wall
clock, currentT imeMillis() may not be a good method for
time due to method overhead.

The query question in the second example is about host-
name mismatch problem in HTTPClient. The best answer
provides a solution and explains the advantage of the provided
solution. Our answer summary consists of five paragraphs
from the five answers of four relevant questions. Except for
the fifth paragraph from the fourth question (about a fact
of Amazon AWS service), the other four paragraphs provide
valuable information which can complement the best answer
of the query question. The third and fourth paragraphs provide
two different solutions for solving the problem, i.e., using
HttpClientBuilder.create().build() or using a fixed version
of HTTPClient instead of the buggy version. Although the
first and second paragraphs do not provide direct solutions,
they point out some important aspects related to the hostname
mismatch problem, such as avoiding the action which allows
all hosts without any verification, checking the DNS name of
the certificate presented by the server.

As the above two examples show, community answers to a
technical question usually focus on a specific aspect technical
issue in the question. Our generated answer summary derived
from answers of several relevant questions can well comple-
ment community answers to a technical question by providing
more alternative solutions and/or broader information useful
for further search and learning.

B. Error Analysis

Through the analysis of the cases in which our approach
generates a low-quality even unrelated answer summary, we
identify four main challenges in generating high-quality an-
swer summary: vague queries, lexical gap between query and
question description, answers involving long code snippet, and
erroneous answer paragraph splitting.

In our study, we randomly select 100 Stack Overflow
questions and use their titles as queries to search the question
repository. However, question titles are short and some of
them are vague, e.g., “Why is this code working without
volatile?”, “Fast processing of data”. It is hard to understand
such question titles without looking into the question bodies.
Furthermore, the lexical gap between query question and titles
of questions in the repository makes it difficult to measure their
semantic relevance. Due to these two challenges, our relevant
question retrieval component fails to retrieve at least one
relevant question in the top 10 results for 34 of the 100 query
questions. The low-quality question retrieval results directly
result in the low quality of the generated answer summary. To
improve relevant question retrieval, we will consider question
bodies which contain richer information and adopt deep neural
network [15] which are more robust for handling lexical gaps
in text.

Our current approach keeps short code fragments (enclosed
in HTML tag 〈code〉) in natural language paragraphs but
removes long code snippets (enclosed in HTML tag 〈pre〉).
However, for some query questions, such as “How to send an
Image from Web Service in Spring’’, “How to implement a db
listener in Java” and “XML to Json using Json-lib”, relevant
answers are code snippets, rather than natural language para-
graphs. Thus, to generate high-quality answer summary for
this type of questions, we must take into account long code
snippets.

Our current approach splits the text in an answer post into
answer paragraphs by HTML tag 〈p〉. This simple strategy may
sometimes break the logic relationships between several con-
secutive physical paragraphs. For example, people often write
some introductory paragraph like “Try with the following: ”,
“From here you can go to”, and “There are many solutions
to this problem”, followed by a separate paragraph explaining
the details. To generate more sensible answer summary, an
introductory paragraph and the following detailed explanation
should be treated as a whole, using more robust paragraph
splitting method.

C. Threats to Validity

Threats to internal validity are related to experimental bias of
participants in manual examination of relevant questions and
answer summaries. First, the participants’ lack of knowledge
on Java may affect their judgements about question/answer’s
relevance and usefulness. This threat is limited by selecting
only participants who have at least 2 years industrial ex-
perience on Java development. Still, there could be errors
because an experienced Java developer is not necessarily
familiar with all Java frameworks and APIs. On the other
hand, the participants’ degree of carefulness and effort in
manual examination may affect the validity of judgements.
We minimize this threat by choosing participants who express
interests in our research, and giving the participants enough
time to complete the evaluation tasks.
Threats to external validity are related to the generalizability
of our research and experiments. Stack Overflow questions are
related to many domains other than Java (e.g. Python, Eclipse,
database), or combinations of multiple domains. Our approach
is general, but considering the background knowledge of
available participants for the user studies, we use only Java
questions in this work. Furthermore, as user studies require
significant human efforts, we only use 100 query questions
in this study. In the future, we will use more queries, larger
question repository, and questions of more domains to reduce
these threats.
Threats to construct validity are related to the suitability
of our evaluation metrics. Relevance [23], usefulness [24]
and diversity [25] are widely used to evaluate summarization
tasks in software engineering, Both relevant question retrieval
and answer paragraphs selection are ranking problems. Thus,
we use Top@k accuracy (k=1, 5, 10) and MRR. These two
metrics are the most widely used metrics for evaluating IR
techniques [26], [15], [27].

714

http://stackoverflow.com/questions/30956461
http://stackoverflow.com/questions/30956461
http://stackoverflow.com/questions/21398631
http://stackoverflow.com/questions/8656085
http://stackoverflow.com/questions/8656085
http://stackoverflow.com/questions/12618915
http://stackoverflow.com/questions/12618915
http://stackoverflow.com/questions/16509777
http://stackoverflow.com/a/10450054
http://stackoverflow.com/a/7213383
http://stackoverflow.com/a/5260527
http://stackoverflow.com/a/5260527

TABLE X
COMPARISON OF THE BEST COMMUNITY-PROVIDED ANSWERS AND THE ANSWER SUMMARY GENERATED BY OUR APPROACH

#1 Query Question: Calculating time diffrence
Relevant QuestionsBest Answer of Query Question(Id: 18575058) Answer Summary Generated by Our Approach Id Title

[9707986] Try this
long start time = System.nanoTime();
resp = GeoLocationService.getLocationByIp(ipAddress);
long end time = System.nanoTime();
double difference = (end time - start time)/1e6;

Try changing
int diff=(int)d2.getTime()-(int)d1.getTime();
to long diff=d2.getTime()-d1.getTime();
Explicit typecasting from long to int

[9707972] No, it doesn’t mean it’s taking 0ms - it shows it’s taking
a smaller amount of time than you can measure with currentTimeMillis().
That may well be 10ms or 15ms. It’s not a good method to call for timing;
it’s more appropriate for getting the current time.

9707938 Calculating time difference in Milliseconds

will cause precision loss and may result in
a negative value on subtraction.
long a = 90000000000000L;
long b = 10000001000000L;
a>b (int)a-(int)b=>negative value

[9707972] To measure how long something takes, consider using
System.nanoTime instead. The important point here isn’t that the
precision is greater, but that the resolution will be greater...
but only when used to measure the time between two calls.
It must not be used as a ”wall clock”.
[9707982] Since Java 1.5, you can get a more precise time value with
System.nanoTime(), which obviously returns nanoseconds instead.
[24907491] You can try this : 24907002 Calculating Time Difference in Java

#2 Query Question: Android HttpClient - hostname in certificate didn’t match <example.com>!= <*.example.com>
Relevant QuestionsBest Answer of Query Question(Id: 3136980) Answer Summary Generated by Our Approach Id Title

[15497467] Important - if you are allowing all hosts (that is, disabling
host name verification), then it is certainly NOT safe. You shouldn’t be
doing this in production.

15497372
Java HTTP post using HTTPS
Confusion - javax.net.ssl.SSLException:
hostname in certificate didn’t match

This is my (edited) solution:
/...code.../
It has the advantage of not changing the

[7257060] The certificate verification process will always verify the
DNS name of the certificate presented by the server, with the hostname
of the server in the URL used by the client.

7256955 Java SSLException: hostname in
certificate didn’t match

default behavior unless there is a wildcard
domain, and in that case it revalidates as
though the 2 part domain (e.g., someUrl.com)

[24526126] This HttpClientBuilder.create().build() will return
org.apache.http.impl.client.InternalHttpClient. It can handle the this
hostname in certificate didn’t match issue.

were part of the certificate, otherwise the
original exception is rethrown. That means
truly invalid certs will still fail.

[34494091] This problem is described in Apache HttpClient resolving
domain to IP address and not matching certificate. It appears to be a
bug in the version of HTTPClient you are using, where it compares the
target IP instead of the target hostname with the subject certificate.
Please use a fixed version of HTTPClient instead.

34493872
SSLException: hostname in certificate
didn’t match
<50.19.233.255>!=<*.heroku.com>

[12755039] Buckets whose name contains periods can now be correctly
addressed again over HTTPS. 12755038 SSL problems with S3/AWS using the Java

API: hostname in certificate didn’t match

VI. RELATED WORK
Many text summarization approaches have been applied

in different software engineering tasks, aiming to reduce the
developers’ effort to read an immense quantity of information.
Rastkar et al. propose an extractive approach for automatic bug
report summarization [28]. Their approach selects a subset of
bug report comments by training a binary classifier to deter-
mine whether a comment should be selected or not. Andrea
et al. propose an approach SURF to produce a summary for
user reviews [24]. SURF classifies each user review sentence
to one of the user-intention categories, and groups together
sentences covering the same topic. It then uses a sentence
selection and scoring mechanism to generate the user-review
summary. Different from the above studies, we focus on
answer summarization on online Q&A sites which requires
a different set of features. Additionally, we formulate our
problem as a ranking problem instead of a classification one.

A number of studies have also proposed methods to identify
relevant or high-quality posts in question and answering sites.
Gottipati et al. propose a semantic search engine framework to
process posts in discussion threads to recover relevant answers
to a user query [29]. They classify posts in the discussion
threads into 7 categories (e.g., questions, answers, clarifying
question, junk, etc.) and use the category labels to filter less
useful information to improve the search experience. Yao
et al. propose an approach to detect high-quality posts in
community question answering sites [30]. Different from the
above studies, we not only identify relevant posts but also
create summaries of these posts.

Popular search engines like Google can provide direct

answers for some types of queries. For example, Google
can extract a paragraph from the best answer of the Stack
Overflow question “what are the differences between hashtable
and hashmap?” as the answer for a query like “differences
between hashtable and hashmap”. However, Google does this
only for specific kinds of 5W+1H (who, what, where, when,
why, how) questions, and it does not generate direct answers
to all 5W+1H questions, e.g., “What are the differences be-
tween quick sort and bubble sort?”. More importantly, Google
extracts only a paragraph from one answer of one question,
while our approach is multi-answer-posts summarization.

VII. CONCLUSION

Our formative study indicates that developers need some
automated answer generation tools to extract a succinct and
diverse summary of potential answers to their technical ques-
tions from the sheer amount of information in Q&A discus-
sions. To meet this need, we propose a three-stage framework
for automated generation of answer summary. Our user studies
demonstrate the relevance, usefulness and diversity of our
automated generated answer summaries. In the future, we will
investigate more robust relevant question retrieval algorithms,
and explore more features for answer paragraph selection. We
will develop our approach into practical tools (e.g., browser
plugins) to provide developers with direct answers and ex-
tended suggestions to help them find the needed information
more efficiently on the Internet.

ACKNOWLEDGMENT

This work was partially supported by NSFC Program (No.
61602403 and 61572426).

715

http://stackoverflow.com/q/18575022
http://stackoverflow.com/a/18575058
http://stackoverflow.com/a/9707986
http://stackoverflow.com/a/9707972
http://stackoverflow.com/questions/9707938
http://stackoverflow.com/a/9707972
http://stackoverflow.com/a/9707982
http://stackoverflow.com/a/24907491
http://stackoverflow.com/questions/24907002
http://stackoverflow.com/q/3135679
http://stackoverflow.com/a/3136980
http://stackoverflow.com/a/15497467
http://stackoverflow.com/questions/15497372
http://stackoverflow.com/a/7257060
http://stackoverflow.com/questions/7256955
http://stackoverflow.com/a/24526126
http://stackoverflow.com/a/34494091
http://stackoverflow.com/questions/34493872
http://stackoverflow.com/questions/12755039
http://stackoverflow.com/questions/12755038

REFERENCES

[1] H. Song, Z. Ren, S. Liang, P. Li, J. Ma, and M. de Rijke, “Summarizing
Answers in Non-Factoid Community Question-Answering.”

[2] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber,
and P. Cimiano, “Template-based question answering over RDF data,”
in Proceedings of the 21st international conference on World Wide Web.
ACM, 2012, pp. 639–648.

[3] M. Iyyer, J. L. Boyd-Graber, L. M. B. Claudino, R. Socher, and
H. Daumé III, “A Neural Network for Factoid Question Answering over
Paragraphs.” in EMNLP, 2014, pp. 633–644.

[4] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of stack overflow,”
in Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on. IEEE, 2013, pp. 97–100.

[5] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining Word
Embedding with Information Retrieval to Recommend Similar Bug
Reports,” in Software Reliability Engineering (ISSRE), 2016 IEEE 27th
International Symposium on. IEEE, 2016, pp. 127–137.

[6] J. Carbonell and J. Goldstein, “The use of MMR, diversity-based rerank-
ing for reordering documents and producing summaries,” in Proceedings
of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 1998, pp. 335–336.

[7] M. A. Just and P. A. Carpenter, “Speedreading,” 1987.
[8] W.-C. Wu, “How far will you go?: characterizing and predicting online

search stopping behavior using information scent and need for cogni-
tion,” in Proceedings of the 36th international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2013,
pp. 1149–1149.

[9] X. Xia, L. Bao, D. Lo, P. S. Kochhar, A. E. Hassan, and Z. Xing, “What
do developers search for on the web?” Empirical Software Engineering,
pp. 1–37, 2017.

[10] B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via convolutional
neural network,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2016, pp. 51–
62.

[11] C. Chen, Z. Xing, and X. Wang, “Unsupervised Software-Specific
Morphological Forms Inference from Informal Discussions.”

[12] D. Ye, Z. Xing, C. Y. Foo, Z. Q. Ang, J. Li, and N. Kapre, “Software-
specific named entity recognition in software engineering social con-
tent,” in Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on, vol. 1. IEEE, 2016,
pp. 90–101.

[13] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[14] S. Bird, “Nltk: the natural language toolkit,” in Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

[15] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language vector
space for domain-specific cross-lingual question retrieval,” in Ieee/acm
International Conference on Automated Software Engineering, 2016, pp.
744–755.

[16] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” in Proceedings of the 34th annual

meeting on Association for Computational Linguistics. Association
for Computational Linguistics, 1996, pp. 310–318.

[17] “Models of the Information Seeking Process,” http:
//searchuserinterfaces.com/book/sui ch3 models of information
seeking.html.

[18] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[19] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Men-
zies, “Automatic query reformulations for text retrieval in software
engineering,” in Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, 2013, pp. 842–851.

[20] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International Conference on
Machine Learning (ICML-14), 2014, pp. 1188–1196.

[21] X. Cao, G. Cong, B. Cui, and C. S. Jensen, “A generalized framework
of exploring category information for question retrieval in community
question answer archives,” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 201–210.

[22] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz, “Sando: an
extensible local code search framework,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, p. 15.

[23] D. R. Radev and W. Fan, “Automatic summarization of search engine
hit lists,” in Proceedings of the ACL-2000 workshop on Recent ad-
vances in natural language processing and information retrieval: held
in conjunction with the 38th Annual Meeting of the Association for
Computational Linguistics-Volume 11. Association for Computational
Linguistics, 2000, pp. 99–109.

[24] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 499–510.

[25] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum: approach
for unsupervised bug report summarization,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, p. 11.

[26] B. Xu, Z. Xing, X. Xia, D. Lo, Q. Wang, and S. Li, “Domain-specific
cross-language relevant question retrieval,” in Proceedings of the 13th
International Conference on Mining Software Repositories. ACM,
2016, pp. 413–424.

[27] B. Xu, Z. Xing, X. Xia, D. Lo, and X.-B. D. Le, “Xsearch: a domain-
specific cross-language relevant question retrieval tool,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering.
ACM, 2017, pp. 1009–1013.

[28] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summarization
of bug reports,” IEEE Transactions on Software Engineering, vol. 40,
no. 4, pp. 366–380, 2014.

[29] S. Gottipati, D. Lo, and J. Jiang, “Finding relevant answers in software
forums,” in Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer
Society, 2011, pp. 323–332.

[30] Y. Yao, H. Tong, T. Xie, L. Akoglu, F. Xu, and J. Lu, “Detecting
high-quality posts in community question answering sites,” Information
Sciences, vol. 302, pp. 70–82, 2015.

716

http://is.muni.cz/publication/884893/en
http://searchuserinterfaces.com/book/sui_ch3_models_of_information_seeking.html
http://searchuserinterfaces.com/book/sui_ch3_models_of_information_seeking.html
http://searchuserinterfaces.com/book/sui_ch3_models_of_information_seeking.html

	Introduction
	Formative Study of Answer Summary
	Proposed Approach
	Relevant Question Retrieval
	Useful Answer Paragraphs Selection
	Diverse Answer Summary Generation

	Experiments & Results
	Question Repository and Tool Implementation
	Experimental Queries
	Participant Selection and Task Allocation
	Research Questions

	Discussion
	Comparison with Community Question Answering
	Error Analysis
	Threats to Validity

	Related Work
	Conclusion
	References

