
Compressing Pre-trained Models of Code into 3 MB
Jieke Shi, Zhou Yang, Bowen Xu∗, Hong Jin Kang and David Lo

School of Computing and Information Systems
Singapore Management University

{jiekeshi,zyang,bowenxu.2017,hjkang.2018,davidlo}@smu.edu.sg

ABSTRACT
Although large pre-trained models of code have delivered signif-
icant advancements in various code processing tasks, there is an
impediment to the wide and fluent adoption of these powerful
models in software developers’ daily workflow: these large models
consume hundreds of megabytes of memory and run slowly on
personal devices, which causes problems in model deployment and
greatly degrades the user experience.

It motivates us to propose Compressor, a novel approach that can
compress the pre-trained models of code into extremely small mod-
els with negligible performance sacrifice. Our proposed method
formulates the design of tiny models as simplifying the pre-trained
model architecture: searching for a significantly smaller model that
follows an architectural design similar to the original pre-trained
model. Compressor proposes a genetic algorithm (GA)-based strat-
egy to guide the simplification process. Prior studies found that a
model with higher computational cost tends to be more powerful.
Inspired by this insight, the GA algorithm is designed to maximize
a model’s Giga floating-point operations (GFLOPs), an indicator of
the model computational cost, to satisfy the constraint of the target
model size. Then, we use the knowledge distillation technique to
train the small model: unlabelled data is fed into the large model
and the outputs are used as labels to train the small model. We
evaluate Compressor with two state-of-the-art pre-trained models,
i.e., CodeBERT and GraphCodeBERT, on two important tasks, i.e.,
vulnerability prediction and clone detection. We use our method to
compress pre-trained models to a size (3MB), which is 160× smaller
than the original size. The results show that compressed CodeBERT
and GraphCodeBERT are 4.31× and 4.15× faster than the original
model at inference, respectively. More importantly, they maintain
96.15% and 97.74% of the original performance on the vulnerabil-
ity prediction task. They even maintain higher ratios (99.20% and
97.52%) of the original performance on the clone detection task.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Designing software; • Computing methodologies
→ Artificial intelligence.

∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Model Compression, Genetic Algorithm, Pre-Trained Models

ACM Reference Format:
Jieke Shi, Zhou Yang, Bowen Xu∗, Hong Jin Kang and David Lo. 2022. Com-
pressing Pre-trained Models of Code into 3 MB. In ASE ’22: 37th IEEE/ACM
International Conference on Automated Software Engineering. ACM, New
York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Pre-trained models of code have achieved great success in various
program understanding and generation tasks [1, 10, 15, 27, 42].
However, these models are large-sized with billions of parameters
and have low inference speed; thus they do not suit consumer-
grade devices or applications that require strictly low latency. To
put things in perspective, CodeBERT [10], a state-of-the-art pre-
trained model for processing multiple programming languages, has
a total of 125 million parameters, which results in a large model
size of 476 MB. When such a large model performs inference on
a consumer-grade laptop, the response latency is as high as 1.5
seconds.1 According to the experience of the Visual Studio teams
who have deployed integrated development environments (IDEs) to
numerous users, Svyatkovskiy et al. [39] suggest that a reasonable
upper bound size for an IDE component or an editor plug-in is 50
MB, while a 3 MB model is preferred as it can be deployed even
in severely restricted environments (e.g., low-end hardware for
teaching students to code). Meanwhile, Aye et al. [2] argue that
the inference latency should be reduced to 0.1 seconds as much
as possible. The pre-trained models of code are designed to serve
coding tasks, promising to be a component in modern IDEs to assist
developers in software development and maintenance. However,
the huge storage and runtime memory consumption, coupled with
high inference latency, make these large models prohibitive for
integration in modern IDEs. Therefore, it is imperative to reduce
the size of these pre-trained models before deploying them.

To date, some approaches have been proposed to compress pre-
trained models in natural language processing or other tasks [19,
36, 43, 50]. These existing studies fall under three types: model
pruning, model quantization, and knowledge distillation. Model
pruning works by replacing partial model parameters with zero [13]
or removing architectural components (e.g., network layers or at-
tention heads) [28]. Model quantization techniques convert the
model’s parameters from 32-bit floating-point numbers into low-bit
fixed-point numbers [48]. Unfortunately, model pruning cannot
compress CodeBERT and GraphCodeBERT to be less than 50 MB –
even if all network layers in the pre-trained model are removed, the
model still leaves an embedding table of about 150 MB. Although

1The results are collected by running a handful of examples with a token length of 400
on the vulnerability prediction task. The number of used CPU cores is limited to 8.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States Shi et al.

model quantization can significantly reduce the model size by stor-
ing parameters using low-bit numbers, a compressed model is not
faster in inference speed or consumes less CPU memory [11, 22, 48].
Instead, specialized hardware or specialized low-level processing
libraries are required at runtime.2 We cannot expect IDE users’ de-
vices to have specialized hardware in addition to a consumer-grade
CPU. A compressed model is expected to bring significant efficiency
gains on CPUs in particular.

Different from model pruning and model quantization tech-
niques, knowledge distillation promises to produce a compressed
model that is small enough and has efficiency gains on CPUs. To
transfer knowledge from a large model to a smaller model, knowl-
edge distillation trains a smaller student model to mimic the behav-
ior of the larger teacher model [17]. However, preserving knowledge
after knowledge distillation is challenging. As pointed out by Cho
et al. [6], the gap in model capacity between the large pre-trained
models makes knowledge distillation unable to achieve good re-
sults. Vapnik et al. [41] proposed model capacity to describe the
complexity and the expressive power of a machine learning model
or a set of functions. A tiny student model with low model capac-
ity cannot absorb knowledge from large models effectively, which
makes the tiny model greatly under-perform the large one [29].
Compared with pre-trained models, tiny models have thinner and
shallower network architectures, and hence, the model capacity is
reduced accordingly. Therefore, carefully choosing an appropriate
architecture with enough capacity for the small student model is
fairly important. Previous studies mostly focus on transferring the
pre-trained model’s knowledge to a tiny model with a pre-defined
architecture. Instead, exploration of how to particularly design the
architectures of tiny student models is limited in the literature.

It is challenging to obtain an appropriate model architecture
that has enough capacity to preserve knowledge distilled from the
large model. First, finding the appropriate architecture is essentially a
combinatorial problem with massive search space. There exist a large
number of network structures to select from (e.g., CNN, LSTM),
and these structures have their own architecture-related hyper-
parameters that can be adjusted (e.g., number and dimension of
network layers). Second, it is computationally infeasible to evaluate
each plausible candidate model by training and testing it, making
it difficult to guide the search. As a result, an easy-to-compute and
effective predictive metric is desired to be tailored for this difficult
search problem.

Pursuant to the above challenges, we propose a novel technique,
Compressor, that efficiently finds an appropriate small studentmodel
that can effectively absorb the knowledge of the large model. Com-
pressor first utilizes the architectural designs of pre-trained models
to narrow the search space. In particular, it tries to find a student
model that shares a similar architecture to the teacher model but
has a smaller size, which we call the model simplification problem.
Gao et al. [12] measure model capacity with the computational
cost, which is defined as the unit of Giga floating-point operations
(GFLOPs). We adopt this measurement, i.e., the computational cost
of a candidate model, as a predictive metric to guide the search.

2Noted that quantization of 8-bit and above can reduce inference latency and memory
consumption on CPUs with the support of PyTorch or TensorFlow libraries, but the
size of the model after 8-bit quantization is bigger than 200 MB. Here we only discuss
quantization below 8-bit.

We design a customized genetic algorithm (GA)-based algorithm
and use the computational cost of a found solution as the fitness
function. After searching with the GA-based algorithm, Compressor
applies knowledge distillation to teach the found small model. It
feeds a number of unlabeled inputs into the pre-trained models
and obtains the predictions for each input. Then, the knowledge
(i.e., pairs of input and prediction) is used to train the small student
model.

To evaluate the effectiveness of Compressor, we conduct exper-
iments with two state-of-the-art pre-trained models of code, i.e.,
CodeBERT [10] and GraphCodeBERT [15]. We experiment Com-
pressor with a 3 MB model size and analyze the performance of
compressed models on two downstream tasks that are important
to assist daily software development activities: vulnerability pre-
diction and clone detection. In particular, we use the Compressor to
compress models to a size (3 MB) that is only 0.6% of the original
model size, the degradation in accuracy is negligible on both two
tasks. On average, the models compressed by Compressor can main-
tain 96.95% and 98.36% of the accuracy of the original large models
on both vulnerability prediction and clone detection tasks. More-
over, we compare the 3 MB models obtained by Compressor with
the 7.5 MB models from Tang et al. [40], which is called BiLSTMsoft .
Results show that Compressor outperforms BiLSTMsoft by 49.27%
and 87.29% to reduce the accuracy loss of compressed models on
both two tasks, respectively. Furthermore, compared with the large
pre-trained models, the compressed models reduce the inference
latency by 70.75% and 79.21% on vulnerability prediction and clone
detection tasks, respectively. We also analyzed the efficiency of
Compressor. The average time spent on finding a tiny model with
an appropriate architecture by Compressor is only 1.22 seconds. Plus
time consumption on training, Compressor brings a low additional
time cost in compressing pre-trained models, which only takes
30.39% and 37.06% of the fine-tuning time on average to compress
CodeBERT and GraphCodeBERT on two tasks. To conclude, this
paper makes the following main contributions:
• Our work is the first to highlight the necessity of compressing
pre-trained models of code and refine this problem into a model
simplification process for pre-trained models.

• We propose Compressor, a novel compression method via genetic
algorithm (GA)-guided model simplification and knowledge dis-
tillation.

• We implement Compressor and evaluate it with CodeBERT and
GraphCodeBERT across two downstream tasks. The results val-
idate the feasibility of compressing pre-trained models with a
negligible performance penalty.
The rest of this paper is structured as follows: Section 2 covers

the preliminary information of our work. Section 3 presents the
proposed Compressor. Section 4 describes the experimental setup.
Section 5 analyses the experimental results. Section 6 discusses the
impacts of compressed model sizes and threats to validity. Section 7
presents related work, and Section 8 concludes our work.

Replication Package: The code and documentation, along with
the obtained models, are made open-source for validating repro-
ducibility.3

3https://github.com/soarsmu/Compressor.git

https://github.com/soarsmu/Compressor.git

Compressing Pre-trained Models of Code into 3 MB ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States

2 PRELIMINARIES
This section briefly introduces some preliminary information about
this study, including pre-trained models of code, knowledge distil-
lation, and the baseline we compare in the experiments.

2.1 Pre-trained Models of Code
Some pre-trained models for natural languages like BERT [8] have
recently demonstrated excellent performance in various language
processing tasks. Inspired by the success of these language models,
researchers have created pre-trained models of code [10, 15] that
can benefit a broad range of programming language processing
tasks.

CodeBERT, which is proposed by Feng et al. [10], can process
multiple programming languages. CodeBERT shares the samemodel
architecture as RoBERTa [25] and is pre-trained on the code search
dataset provided by Husain et al. [18]. This dataset consists of
6 million code functions and 2 million function-documentation
pairs collected from open-source projects. CodeBERT has two pre-
training tasks. One is called masked language modeling (MLM),
which aims to predict the original values of some tokens that are
masked out in an input. The other task is named replaced token
detection (RTD); the model needs to determine whether a token in
a given input is replaced. Experiment results have shown that in
downstream tasks like the code-to-text generation or code search,
which require the model to comprehend the code semantics, Code-
BERT can yield superior performance. GraphCodeBERT [15] uses
the same architecture as CodeBERT. Its difference with CodeBERT
is that GrapCodeBERT additionally considers the inherent struc-
ture of code, i.e., data flow graph (DFG). GraphCodeBERT keeps
the MLM training objective and discards the RTD objective. In-
stead, it designs two DFG-related tasks for learning representation
from data flow: data flow edge prediction and node alignment. The
former is to mask some edges in the data flow graphs and then
let GraphCodeBERT predict those edges. Another task is to align
the representation between source code and data flow, which lets
GraphCodeBERT predict from which position in the source code a
variable in the DFG is extracted. Results show that GraphCodeBERT
outperforms CodeBERT on four downstream tasks [15].

There are some other pre-trained models of code. Two language-
specific pre-trainedmodels are CuBERT [20] and C-BERT [4], which
are trained on Python and C source code, respectively. CodeT5 [42]
is a Transformer-based model that considers identifier information
during pre-training and can be used to address both code under-
standing and generation tasks. This paper focuses on compressing
CodeBERT and GraphCodeBERT, considering their popularity and
good performance. A recent study [27] has empirically shown that
CodeBERT and GraphCodeBERT demonstrate state-of-the-art per-
formance across multiple code processing tasks.

2.2 Knowledge Distillation
With the continuously increasing data and model size, Deep Neural
Network (DNN) models have been successful on many tasks. How-
ever, deploying these advanced models is challenging, considering
their large size and with limited power of deployed devices. Various
model compression techniques have been proposed, and knowledge
distillation is a representative of them [14]. Knowledge distillation

Pre-trained model

Small modelModel Simplification

Unlabeled data

Query

Search

Knowledge
distillation

Figure 1: This figure illustrates an overview of the proposed
model compression approach. Themodel simplificationmod-
ule analyzes the pre-trained models and searches for a small
model using a GA-based strategy. Then we use unlabeled
data to query the pre-trained model. Then the pre-trained
model’s outputs are used to train the small model, which is
called knowledge distillation.

compresses a large model by training a small model to mimic the
behaviors of the model (i.e., produces the same output given the
same input) [3, 14, 17]. The large model serves as a teacher, and the
small model learns to mimic the teacher as a student. Many tech-
niques have been proposed to show the effectiveness of knowledge
distillation on different tasks, including image classification [6, 26],
sentiment analysis [40], speech recognition [47], etc.

According to how the compressed models are used, knowledge
distillation techniques can be categorized into task-specific distil-
lation and task-agnostic distillation. The former is to compress
a pre-trained model that is fine-tuned on a specific task so that
the compressed model can be applied to the downstream task di-
rectly. The latter is to compress the original pre-trained model
directly and then fine-tune the compressed model on the down-
stream task [19, 33]. Task-agnostic distillation involves an extremely
time-consuming and computational resource-hungry pre-training
process. For instance, DistillBERT [33] is trained on 8 16GB V100
GPUs for approximately 90 hours, while NASBERT [44] is trained
on 32 NVIDIA P40 GPUs for 8 days. Such huge training costs can
be prohibitive in model developments. Our study focuses on task-
specific distillation as it incurs less time cost and has much lower
computational resource requirements.

3 METHODOLOGY
We explain the design of our proposed tool Compressor in this
section, including the formalization of the search problem, the
GA-guided model simplification algorithm, and how to perform
knowledge distillation to train the small models.

3.1 Overview
Knowledge distillation is a technique to compress a large model
into a smaller one. First, we query the large model and obtain its
outputs, which are treated as the ‘knowledge’ of the large model.

ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States Shi et al.

Then the distilled knowledge is used to train a smaller model so that
the latter can maintain (most of) the behaviors of the large model
but has a smaller size. However, the architecture of a small model
can significantly impact the model performance after knowledge
distillation [6]. The process of finding an optimal architecture for a
small model is essentially a search problem: given a constraint on
the model size, we want to search for a model that has the optimal
performance after knowledge distillation.

To tackle the search problem, two main challenges need to be ad-
dressed. The first challenge is the huge search space with numerous
plausible combinations. A model stacks many layers, each of which
contains different numbers of parameters. Small changes to any
element of the architecture may result in a new neural network that
could produce largely different performance even when trained
on the same dataset. Model developers usually put laborious engi-
neering effort into finding an appropriate architecture for the tiny
model, which is time-consuming and computing resource-hungry.
The second challenge is that the objective of this search problem,
i.e., the performance of the tiny model after distillation, is very
expensive to compute. It is impractical and infeasible to train and
evaluate each model we find in the searching process. Therefore,
an easy-to-compute and effective predictive metric is desired to be
tailored for this difficult search problem.

In this work, we propose Compressor, a novel approach that
compresses pre-trained models of code via guided model simpli-
fication. Compressor is designed to solve the aforementioned two
challenges. To overcome the first challenge, Compressor tries to
follow the similar architectural design of the pre-trained models
(i.e., the teacher models) to narrow the search space. In particular,
it finds a student model that shares a similar architecture to the
teacher model but has less width and depth, which we refer it as
the model simplification problem. The candidate architectures are
determined by a set of architecture-related hyperparameters, e.g.,
the number of layers, the network’s dimensions, etc. To overcome
the second challenge, we customize a genetic algorithm (GA)-based
strategy to guide the process of model simplification, so as to find
the promising architecture-related hyperparameters that can am-
plify the capacity of searched tiny models as much as possible and
fit the given size limit meanwhile (presented in Section 3.3). Finally,
we adopt the knowledge distillation to obtain a well-performing
small model (presented in Section 3.4).

Application Scope. A dozen of pre-trained models of code emerge
across different academic venues. Most of them belong to BERT fam-
ily as they uphold the same architecture as BERT [8] or RoBERTa [25],
e.g., CodeBERT [10], GraphCodeBERT [15], and CuBERT [20]. A
few exceptions also maintain a Transformer-based architecture,
e.g., CodeT5 [42], GPT-C [38], and CodeGPT [27]. We argue that
our study works out of the box for BERT-family pre-trained models,
while requiring only minor modifications for other Transformer-
based models. The current implementation of Compressor primarily
focuses on the compression of CodeBERT and GraphCodeBERT
due to their popularity and superior performance. However, our
methodology can generalize to other Transformer-based models.
We leave the evaluation of compressing other pre-trained models
as future work (further discussion in Section 6.2).

Table 1: Hyperparameters of BERT-family pre-trained mod-
els of code, and the search space of GA-guided model simpli-
fication including number of network layers (𝐿), dimension-
ality of the network layers (𝐻), number of attention heads
(𝐴), dimensionality of the feed-forward layers (𝐷), and vocab-
ulary size (𝑉).

Hyperparameter
Pre-trained
Models

Search Space

𝐿 12 [1, 12], interval=1
𝐻 768 [16, 768], interval=16
𝐴 12 1, 2, 4, 8
𝐷 3072 [32, 3072], interval=32
𝑉 50265 [1000, 50000], interval=1000

3.2 Problem Search Space
As pointed out by Liu et al. [24], a student model that shares the
same architecture as BERT, i.e., a bidirectional encoder architecture
from transformers, can still achieve comparable or even outperform
the large BERT model. This indicates that sharing a similar archi-
tecture to the teacher model can upgrade the performance of the
student model after knowledge distillation. The size of a model in
the BERT family relates to a set of hyperparameters. We thoroughly
analyze these hyperparameters and allow tuning of the following
ones related to the model architecture to simplify a model: the
number of network layers (𝐿), the dimensionality of the network
layers (𝐻), the number of attention heads (𝐴), the dimensionality of
the feed-forward layers (𝐷), and the vocabulary size (𝑉). We limit
the adjustable value of these hyperparameters to no larger than the
corresponding ones in the pre-trained model, as shown in Table 1.
Besides, in order to avoid the generation of invalid architectures
with misaligned dimensions, hyperparameters are adjusted at spe-
cific intervals. The number of layers can be adjusted from 1 to 12.
The range of the dimensionality of the network layers is from 16
to 768. The number of attention heads can be tuned as one size in
{1, 2, 4, 8}. The dimensionality of the feed-forward layers can be
tuned between 32 and 3072. The vocabulary size can be adjusted
between 1000 and 50000.

3.3 GA-guided Model Simplification
Finding an appropriate simplified model under a model size con-
straint is essentially a combinatorial optimization problem, with an
objective of finding the optimal combination of architecture-related
hyperparameters that minimizes the difference between the small
model size and a given size limit, and maximizes the capacity of the
tiny model to achieve better performance in subsequent distillation.
However, it is non-trivial to identify a good combination of hyper-
parameters to adjust the structure of pre-trained models due to
the large number of plausible hyperparameters. Although we have
bounded such a search space, there are a total of 11,059,200 possible
combinations of hyperparameters (possible candidates architec-
tures of small models) to be tested. It is computationally infeasible
to evaluate each plausible candidate model by training and testing
it, making it difficult to guide the search. Therefore, we propose
a genetic algorithm (GA)-based strategy to guide the process of

Compressing Pre-trained Models of Code into 3 MB ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States

model architecture simplification. Algorithm 1 shows the overview
of how GA-guided model architecture simplification works. It first
initializes the population (Line 1), and then performs genetic op-
erators to generate new solutions (Line 2 to 11). Our GA-guided
strategy computes the fitness function and keeps solutions with
larger fitness values (Line 13). In the end, the algorithm returns the
solution with the highest fitness value (Line 15 to 16).
Chromosome Representation. In GA, a chromosome represents
a solution to the target problem, consisting of a set of genes. In our
study, each gene is a key-value pair of hyperparameter designation
and specific value. Chromosomes store these key-value pairs in
a dictionary data structure. For example, a chromosome can be
{𝐿: 3, 𝐻 : 512, 𝐴: 4, 𝐷 : 1024, 𝑉 : 10000}, which represents a candi-
date architecture with 3 network layers of 512 dimensions and 4
attention heads, as well as 1024-dimensions feed-forward networks
and 10000-sized vocabulary. Following common GA practice, we
initialize a set of chromosomes by randomly setting the value of
each key-value pair in the chromosome. These randomly initial-
ized chromosomes, referred to as a population in GA terminology,
provide a seed to launch iterations of evolution.
Fitness Function. GA uses a fitness function to measure and com-
pare the quality of chromosomes in a population. A higher fitness
value indicates that the chromosome is closer to the target of this
problem. As we discussed in Section 1, a small model is expected
to have enough model capacity to incorporate knowledge from the
pre-trained model, thus guaranteeing comparable performance to
large models at an extremely reduced model size. Disproportionate
model capacity will make tiny models unable to well finish captur-
ing and distilling knowledge. Following Gao et al. [12], we measure
the model capacity by the computational cost in the unit of Giga
floating-point operations (GFLOPs). GFLOPs count how many mul-
tiply and accumulate operations the model needs to make a forward
pass. Larger GFLOPs mean that the model has a larger capacity.
Given a target model size, Compressor aims to find a small model
that satisfies the model size and has the largest GFLOPs meanwhile.
The fitness function is defined as follows:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝑠) = 𝐺𝐹𝐿𝑂𝑃𝑠 − |𝑡𝑠 −𝑇 | (1)

where 𝑠 is a chromosome, and𝐺𝐹𝐿𝑂𝑃𝑠 is the computational cost of
the architecture corresponding to 𝑠 . 𝑇 is the given model size and
𝑡𝑠 is the size of the tiny model created according to 𝑠 . |𝑡𝑠 −𝑇 | is the
difference between the model size of the current searched model
and the target model size.
Operators and Selection At each iteration, we employ two stan-
dard genetic operators, i.e., crossover and mutation, to produce new
chromosomes. We apply crossover with a probability of 𝑟 (Line
7) and mutation with a probability of 1 − 𝑟 (Line 9). Given two
chromosomes (𝑐1 and 𝑐2), the crossover operator works as follows:
we first randomly select a cut-off position ℎ, and replace 𝑐1’s genes
after the position ℎ with 𝑐2’s genes at the corresponding positions.
The mutation operator also first randomly selects a cut-off position
ℎ, and then replace 𝑐1’s genes after the position ℎ with a random
value. After producing a new generation in one iteration, we merge
them with the current population and perform a selection operator
(Line 13). We always maintain a population of the same size and
discard the chromosomes with lower fitness values.

Algorithm 1: GA-guided Model Simplification
Input: 𝑐 : value ranges of architecture-related hyperparameters,
𝑟 : crossover rate,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 : maximum number of iterations,
𝑐ℎ𝑖𝑙𝑑_𝑠𝑖𝑧𝑒 : number of generated children in each iteration
Output: 𝑐′: architecture-related hyperparameters

1 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = random_initialization(𝑐);
2 while not exceed𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
3 𝑐ℎ𝑖𝑙𝑑_𝑙𝑖𝑠𝑡 = [] ;
4 while 𝑙𝑒𝑛 (𝑐ℎ𝑖𝑙𝑑_𝑙𝑖𝑠) < 𝑐ℎ𝑖𝑙𝑑_𝑠𝑖𝑧𝑒 do
5 𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 1) ;
6 if 𝑝 < 𝑟 then
7 𝑐ℎ𝑖𝑙𝑑 = crossover(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ;
8 else
9 𝑐ℎ𝑖𝑙𝑑 = mutation(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);

10 end
11 𝑐ℎ𝑖𝑙𝑑_𝑙𝑖𝑠𝑡 .append(𝑐ℎ𝑖𝑙𝑑);
12 end
13 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = selection(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∪ 𝑐ℎ𝑖𝑙𝑑_𝑙𝑖𝑠𝑡);
14 end
15 𝑐′ = argmax(population); # select the one with the highest

fitness value
16 return 𝑐′

3.4 Distillation with Unlabeled Data
We advocate to use unlabeled data in knowledge distillation, as
(1) Tang et al. [40] and Jiao et al. [19] have shown that knowledge
distillation without involving ground-truth labels can achieve better
results; (2) labeled data is expensive and difficult to obtain, but
unlabeled data can be easily scraped from the raw code of open-
source projects in code hosting sites; and (3) a realistic scenario
is that the deployed tiny model needs to be trained with newly
generated data by users to harden performance, where no labeled
data is available.

Our study applies the knowledge distillation method introduced
by Hinton et al. [17], where the student model learns from the
teacher model’s output probability directly. This method belongs to
the task-specific distillation group that is mentioned in Section 2.2.
A recent study [51] confirms its effectiveness in transferring knowl-
edge from a target large model to a small model across multiple
tasks. Specifically, we first feed unlabeled data into the larger pre-
trained model and collect the output probability values. Then, we
train the tiny model architecture identified by GA-guided model
simplification following the objective introduced by Hinton et al.
We minimize the loss between the output of the pre-trained and
tiny models by the following loss function:

L = − 1
𝑛

𝑛∑︁
𝑖

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑝𝑖
𝑇
) log

(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑞𝑖

𝑇
)
)
𝑇 2 (2)

In the above equation, 𝑛 is the number of examples in the training
set. 𝑝𝑖 and 𝑞𝑖 are the outputs of the large model and the tiny model,
respectively. 𝑇 is the temperature index to soften the softmax func-
tion introduced by Hinton et al. [17]. Note that the pre-trained
model producing 𝑝𝑖 is fixed during the distillation process while
the small model producing 𝑞𝑖 is trained.

ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States Shi et al.

4 EXPERIMENTAL SETTINGS
This section explains our experiment settings to evaluate the pro-
posed Compressor, including the implementation details, datasets,
and evaluation criteria.

4.1 Implementation and Configurations.
Compressor is implemented in Python with around 2, 000 lines of
code built upon HuggingFace Transformers. We borrow the work
by Clark et al. [7] to calculate the FLOPs of a model and use APIs
in PyTorch to calculate the model size.

In the experiments, the GA algorithm maintains a population
of 50 candidate models. The crossover rate is set as 0.6. The GA
algorithm terminates when the number of iterations reaches 100.
All the experiments are conducted on an Ubuntu 18.04 server with
an Intel Xeon E5-2698 CPU, 504GB RAM, and 8 Tesla P100 GPUs.

4.2 Datasets and Tasks
To sufficiently evaluate Compressor, we select two pre-trained mod-
els of code (CodeBERT [10] and GraphCodeBERT [15]) that demon-
strate state-of-the-art performance on a series of downstream tasks
and use Compressor to reduce their model sizes. We consider two
important downstream tasks: vulnerability prediction and clone
detection.
Vulnerability Prediction. This task aims to predict whether a
given code snippet is vulnerable or not. Integrating the model for
this task as an IDE component can greatly help developers identify
potential code defects at an early stage. We use the dataset called
Devign4, which was released by Zhou et al. [53]. Devign contains
27,318 functions extracted from two popular open-sourced C li-
braries called FFmpeg and Qemu. These functions are manually
labeled as either containing vulnerabilities or not. Devign is in-
cluded as a part of CodeXGLUE benchmark [27] to investigate the
effectiveness of CodeBERT for predicting vulnerabilities. Following
the settings in CodeXGLUE, we use 2,732 examples for both vali-
dation and testing sets. We equally split the remaining examples
into two mutually exclusive parts. One half is used to fine-tune
the CodeBERT and GraphCodeBERT. The other half, whose labels
are erased, is used to perform knowledge distillation and train the
compressed models from scratch.
Clone Detection. This task aims to decide whether two given func-
tions are clones, i.e., equivalent in operational semantics. Clone
detection can identify redundant implementations of the same
functionalities. Finding code clones can help developers take ac-
tions to improve software quality, e.g., by code refactoring. Big-
CloneBench [37] is a broadly-used benchmark for clone detec-
tion.5 BigCloneBench is collected from various open-sourced Java
projects. It contains more than 6,000,000 pairs of cloned Java meth-
ods as well as 260,000 non-clone pairs. Following the settings of
prior works [46], we randomly select 90, 102 examples for training
and 4,000 for validation and testing to keep the experiment at a
computationally friendly scale. Similar to what we have done to the

4https://sites.google.com/view/devign
5https://github.com/clonebench/BigCloneBench

Table 2: Statistics of datasets and performance of the two
pre-trained models.

Task
Labeled/Unlabeled

Val/Test
Model Acc (%)

Vulnerability
Prediction [53]

10,927/10,927 CodeBERT 61.82
2,732/2,732 GraphCodeBERT 61.38

Clone
Detection [37]

45,051/45,051 CodeBERT 96.20
4,000/4,000 GraphCodeBERT 96.62

vulnerability prediction dataset, the training data is also equally di-
vided into labeled and unlabeled parts for obtaining the pre-trained
and compressed models, respectively.

To fine-tune CodeBERT on the vulnerability prediction and clone
detection tasks, we use the same hyperparameter settings adopted
in the CodeXGLUE benchmark [27]. To fine-tune GraphCodeBERT,
we follow the same hyperparameter setting in the GraphCodeBERT
paper [15]. We follow the CodeXGLUE paper [27] and Yang et
al. [46] to use accuracy as the evaluation metric to evaluate the
model performance on downstream tasks. Although the labeled
training data we used is half of the full training set, all models
achieve comparable results to the state-of-the-arts reported in the
CodeXGLUE benchmark [27] and the GraphCodeBERT paper [15].
The statistics of datasets and the performance of fine-tuned models
are presented in Table 2.

4.3 Evaluation Metric and Baseline
A good model compression method is expected to (1) significantly
reduce the model size and (2) have minimal negative impacts on the
model’s performance (e.g., accuracy). As suggested by Svyatkovskiy
et al. [39], models of a 3 MB size are friendly to deploy in various
devices, even some low-end hardware used to teach students to
code. We compress the pre-trained models into 3 MB. Following
the CodeXGLUE benchmark [27] and Yang et al. [46], the accuracy
is used as the evaluation metric on downstream tasks. We measure
the prediction accuracy of tiny models obtained by Compressor and
compute to what extent the accuracy decreases.

Moreover, we consider a task-specific distillation method called
BiLSTMsoft introduced by Tang et al. [40] as our baseline. BiLSTMsoft
is capable of compressing pre-trained models to 7.5 MB in our ex-
periments, a size that is closed to the 3 MB expectation across the
related literature. We choose BiLSTMsoft as our baseline for two
reasons. On the one hand, the compressed models in their work
also learn from the output logits of the pre-trained model; no other
model outputs (e.g., the output of each encoder layer in pre-trained
models) are required to perform knowledge distillation. Such set-
tings are in line with ours. Second, BiLSTMsoft is able to compress
the pre-trained model to a very small size.

BiLSTMsoft uses a shallow Bidirectional Long Short Term Mem-
ory (BiLSTM) network to distill a sizeable pre-trained model. More
specifically, the student model has a fairly simple structure, consist-
ing of a single-layer BiLSTM and two fully-connected layers. The
training objective of BiLSTMsoft is to minimize the mean squared er-
ror between the student model’s logits and the pre-trained model’s

https://sites.google.com/view/devign
https://github.com/clonebench/BigCloneBench

Compressing Pre-trained Models of Code into 3 MB ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States

Table 3: Accuracy comparison of pre-trained models and compressed models. The size of each model is enclosed in parentheses.
In the rows of Accuracy, the numbers in the parentheses correspond to the ratio of compressed model’s accuracy to pre-trained
models. In the rows of Drop, the numbers in the parentheses correspond to the ratio of relative improvements of Compressor
compared to the baseline.

Model
Vulnerability Prediction Clone Detection

Accuracy (%) Drop (%) Accuracy (%) Drop (%)

CodeBERT (481 MB) 61.82 - 96.20 -
BiLSTMsoft (7.5 MB) 57.86 3.96 83.93 12.27
Compressor (3 MB) 59.44 (96.15%) 2.38 (-39.90%) 95.43 (99.20%) 0.77 (-93.72%)

GraphCodeBERT (481 MB) 61.38 - 96.62 -
BiLSTMsoft (7.5 MB) 58.02 3.36 84.08 12.54
Compressor (3 MB) 59.99 (97.74%) 1.39 (-58.63%) 94.22 (97.52%) 2.4 (-80.86%)

Average Maintained Accuracy/Improvements 96.95% -49.27% 98.36% -87.29%

logits. Tang et al. [40] also proposed using data augmentation tech-
niques to harden the student model, which is to generate an amount
of synthetic data by replacing words in a sentence based on the
part-of-speech tags (i.e., grammatical properties of each word) [30].
Since source code does not have such tags, the data augmentation
method is inherently unusable on compressed pre-trained code
models.

We use the code from their official repository6 in our exper-
iments. Tang et al. provided information about all the hyperpa-
rameter settings of their method, except the vocabulary size. We
follow all provided hyperparameter settings and keep the vocabu-
lary size the same as the vocabulary size of our searched models.
Furthermore, to demonstrate the efficiency of compressed models,
we focus on the inference latency (i.e., how long it takes the model
to return a prediction for an input) each time the model is queried,
which is important in a real-world deployment [2, 39]. We also take
into account the time cost of the model compression process in
Compressor. The time cost consists of the time spent searching the
parameters to simplify models and the time for knowledge distil-
lation, demonstrating how long Compressor takes to compress the
pre-trained models after fine-tuning.

5 EXPERIMENTAL RESULTS
This section presents the evaluation results of our proposed ap-
proach and baselines. Our evaluation aims to answer the following
research questions (RQ):
• RQ1: Can Compressor result in small accuracy loss when ex-
tremely compressing the pre-trained models?

• RQ2: How much efficiency improvement can the compressed
models obtain?

• RQ3:How fast is Compressor in compressing pre-trained models?

5.1 RQ1: Accuracy Loss of Compressor
There is no free lunch in the world – compressing the pre-trained
models may penalize the original effectiveness of the models, i.e.,
having a lower prediction accuracy on downstream tasks. In this

6https://github.com/castorini/d-bert

research question, we aim to show that Compressor can compress
models to extremely small sizes with little loss of accuracy.
Comparison with pre-trained models. We use Compressor to
compress the two pre-trained models of code into 3 MB each and
investigate how much prediction accuracy the compressed models
lose. Table 3 presents the prediction accuracy of compressed models
obtained by Compressor and the decrease in performance compared
to the original pre-trained models in the 5𝑡ℎ and 8𝑡ℎ rows. We also
report the results of BiLSTMsoft in row 4 and row 7 to emphasize
the improvements brought by Compressor. We first analyze the ac-
curacy loss of models compressed by our method compared to the
accuracy of the original pre-trained models. Our results show that
the compressed models cause a negligible decrease in prediction ac-
curacy when the model size is reduced to only 3 MB, which is only
0.6% of the original volume. The compressed CodeBERT obtained
by Compressor maintains 96.15% of the original accuracy on the
vulnerability prediction task. Meanwhile, Compressor achieves less
accuracy degradation in compressing GraphCodeBERT, where the
compressed model maintains 97.74% of the original accuracy. On
the clone detection task, compressed CodeBERT and GraphCode-
BERT obtained by Compressor can achieve 99.20% and 97.52% of
the original large models in terms of accuracy, respectively. These
high fidelity accuracy results relative to the original model reveal
that Compressor can significantly reduce model size with negligible
accuracy loss, implying its effectiveness in compressing pre-trained
models of code.
Comparison with BiLSTMsoft . We observe that Compressor can
greatly outperform BiLSTMsoft on both two tasks, especially the
clone detection task. Compared with the 7.5 MB BiLSTMsoft , whose
model size is more than twice that of the models obtained by
Compressor, the CodeBERT and GraphCodeBERT compressed by
Compressor have reduced the accuracy loss by 93.72% (i.e., (0.77-
12.27)/12.27) and 80.86%, respectively. On the vulnerability pre-
diction task, the models obtained by Compressor also greatly re-
duce accuracy drops of BiLSTMsoft : compressed CodeBERT reduces
the accuracy drops of BiLSTMsoft by 39.90% and the compressed

ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States Shi et al.

Table 4: The inference latency of original pre-trained and
compressed models on different tasks. The percentage in
parentheses is the relative improvements brought by Com-
pressor.

Model
Vulnerability
Prediction

Clone
Detection

Latency (ms)

CodeBERT (481 MB) 1507 2675
Compressor (3 MB) 347 (-76.97%) 625 (-76.64%)

GraphCodeBERT (481 MB) 1209 1788
Compressor (3 MB) 429 (-64.52%) 326 (-81.77%)

Average Improvements -70.75% -79.21%

GraphCodeBERT reduces the accuracy drop by 58.63%. These re-
sults demonstrate the significant superiority of Compressor over
BiLSTMsoft .

To sum up, when Compressor compresses the pre-trained models
of code into 3 MB, which is only 0.6% of the original model size,
the degradation in accuracy is negligible on both two tasks. On
average, the models compressed by Compressor can still maintain
96.95% and 98.36% of the accuracy of the original large models on
both vulnerability prediction and clone detection tasks. Moreover,
Compressor outperforms BiLSTMsoft by 49.27% and 87.29% in re-
ducing the accuracy loss of compressed models on both two tasks,
respectively.

5.2 RQ2: Efficiency of Compressed Models
To upgrade the user experience, a plugin in IDEs or code editors
is required to provide instantaneous assistance to developers so
as to make the development process more efficient [2, 39]. In this
research question, we investigate the efficiency of the compressed
models obtained by Compressor. We analyze the inference latency
when models make predictions, i.e., how much time a model takes
to return a prediction for an input on average. The inference latency
is related to two factors: the machine where the models run, and
the input length (i.e., how many tokens are in the input). For fair
comparisons, we use the same machine to run the models, which
is mentioned in Section 4.1. We limit the models to only using 8
CPU cores to simulate running on a regular consumer-grade laptop.
Usually, longer inputs take longer to compute. We set the input
lengths to be the same as in experiments for RQ1, which is 400 for
vulnerability prediction and 800 for clone detection, respectively.
For each task, we randomly sample 100 examples from the test set.
We query the models with the sampled 100 examples and calculate
the average inference latency taken by the models. To reduce the
effects of randomness, we repeat the experiments three times. The
results are presented in Table 4.

The inference latency of large pre-trained models is over a thou-
sand milliseconds, while our compressed models have a latency of
just a few hundred milliseconds. On compressing CodeBERT, the av-
erage inference latency of the 3 MB models obtained by Compressor

Table 5: The time cost of fine-tuning and compressing pre-
trained models on different tasks. The percentage in paren-
theses is the ratio of time spent by Compressor to fine-tuning
time.

Stage
Vulnerability
Prediction

Clone
Detection

Time Cost (min)

CodeBERT Fine-tuning 49 124
Compressor 13 (26.53%) 47 (37.90%)

GraphCodeBERT Fine-tuning 73 243
Compressor 25 (34.25%) 88 (36.21%)

Average 30.39% 37.06%

is 347 ms for vulnerability prediction and 625 ms for clone detec-
tion; the latter task takes longer inputs. Compared with the original
pre-trained models, the inference latency of compressed models is
significantly reduced by 76.97% and 76.64%, respectively. Setting
sights to the compressed GraphCodeBERT, the compressed Graph-
CodeBERT is 64.52% faster than the original pre-trained model on
the vulnerability prediction task. On the clone detection task, the
inference latency of the compressed GraphCodeBERT is 81.77% less
than the original pre-trained model. These results demonstrate the
efficiency benefits that small models can potentially bring to real-
world deployments, which is another key advantage of Compressor.

5.3 RQ3: Time Cost of Compressor
Compressor is a task-specific compression approach, which sug-
gests that the pre-trained models to compress should be fine-tuned
on a downstream task first. Therefore, applying Compressor dur-
ing model development will inevitably introduce additional time
costs. Since fine-tuning a large pre-trained model is already time-
consuming, the subsequent compression process should not add
too much overhead. In this research question, we investigate the
time spent by Compressor on compressing pre-trained models and
aim to show that a well-performing tiny model can be obtained
with much less time cost than fine-tuning large pre-trained models.

We repeat each experiment three times and count the time con-
sumption of each stage, including fine-tuning and compressing
the pre-trained models. We present the average time consumption
in Table 5. Noted that we still consider 3 MB as the target size of
compressed models. Table 5 displays the time consumption of fine-
tuning and compressing the pre-trained models on different tasks.
We observe that compressing the pre-trained models takes less
time than fine-tuning the models on both tasks. The number inside
parentheses is the ratio of compression time to the fine-tuning time.
The time cost of model simplification and knowledge distillation
is counted as a whole here. On the vulnerability prediction task,
Compressor needs only 26.53% and 34.25% of fine-tuning time to
compress CodeBERT and GraphCodeBERT, respectively. Although
Compressor spends more time on the clone detection task, which
needs to process a significantly larger dataset, as described in Sec-
tion 4.2, it still only uses 37.90% and 36.21% of the fine-tuning time

Compressing Pre-trained Models of Code into 3 MB ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States

Table 6: The accuracy comparison of compressed models
with different sizes. In the rows of Accuracy, the numbers in
the parentheses correspond to the absolute improvement of
accuracy compared with 3 MB models.

Model
Vulnerability
Prediction

Clone
Detection

Accuracy (%)

Compressor (3 MB) 59.44 95.43
Compressor (25 MB) 60.8 (+1.36) 95.58 (+0.15)
Compressor (50 MB) 61.31 (+1.87) 96.30 (+0.87)

Compressor (3 MB) 59.99 94.22
Compressor (25 MB) 60.32 (+0.33) 95.65 (+1.43)
Compressor (50 MB) 60.83 (+0.84) 96.78 (+2.56)

to compress CodeBERT and GraphCodeBERT, respectively. On av-
erage, Compressor only incurs 30.39% and 37.06% additional time
to the fine-tuning time, which we believe to be reasonable. Note
that this overhead is only incurred occasionally, e.g., the first time
compressing the pre-trained models for deployment, and every
time the model is on-demand to update for producing good results,
which may be done monthly or yearly.

We also analyzed the efficiency of the GA-guided model simpli-
fication algorithm. Benefiting from the carefully-designed search
space and fitness function, the GA-guided model simplification can
return an appropriate model architecture fast that is then used as
the student model in the subsequent knowledge distillation. To
investigate the speed of the GA algorithm, we run the GA-guided
search 10 times. On average, the GA-based algorithm spent 1.22
seconds searching a model architecture. The results further demon-
strate the efficiency of Compressor.

6 DISCUSSIONS
This section discusses whether the accuracy of compressed models
can be boosted if we increase the model sizes. We point out the
potential extensions of our proposed Compressor and highlight the
threats to validity and how to minimize these potential threats.

6.1 The Impact of Compressed Model Sizes
In our main experiment, we compress CodeBERT and GraphCode-
BERT to a size of 3 MB, which is less than 1% of the original model
size. There may exist some other applications that have looser re-
strictions on the model size. We discuss how the size of compressed
models affects the model performance. We further experiment with
two additional compression rates: 5% and 10%, to compress the
models into around 25 MB and 50 MB.

Table 6 displays the accuracy of pre-trained and compressed
models of different sizes. On the vulnerability detection task, we
observe that the performance of the 25 MB and 50 MB models (com-
pressed from CodeBERT) increases by 1.36% and 1.87%. Similarly,
the two models compressed from GraphCodeBERT also have bet-
ter performance: the accuracy increases by 0.33% and 0.84%. On
the clone detection task, the performance of the two models (com-
pressed from CodeBERT) increases by 0.15% and 0.87%. The two

models compressed from GraphCodeBERT have 1.43% and 2.56%
higher accuracy. The results show that having a larger size can
indeed improve compressed models’ performance. It also further
verifies the effectiveness of our proposed Compressor.

6.2 Extensions of Compressor
In Section 5, we have demonstrated the advantages of Compres-
sor in terms of high compression rates, low accuracy degradation,
and efficiency. We now discuss the promising extensions that can
be done to Compressor. We prototype Compressor as a model sim-
plification tool that supports a limited number of popular fine-
tuning/training pipelines that use HuggingFace Transformers. Its
search space is constrained to the architecture of BERT-family mod-
els, due to their popularity and superior performance. However,
the proposed method is promising to extend to support more pre-
trained models with different architectures, e.g., CodeGPT [27] and
CodeT5 [42], with minimal effort to modify the way GFLOPs are
calculated.

6.3 Threats to Validity
6.3.1 Internal validity. In our experiments, we mainly focus on
searching architecture-related hyperparameters to compress pre-
trained models, but the accuracy of the compressed model can also
vary under other remaining hyperparameters settings, e.g., input
length, numbers of training epochs, etc. To mitigate the threats,
when fine-tuning pre-trained models, we keep the hyperparameters
settings the same as described in [10, 15, 27]. We compare the
performance of pre-trained models obtained in our study with
results reported in the literature [27] to show that our pre-trained
models are properly trained. When compressing the model, we
only modify the architecture-related hyperparameters as well as
the learning rate, and the remaining hyperparameter settings are
consistent with CodeBERT or GraphCodeBERT. In addition to these,
another threat may lie in the implementations of Compressor and
our scripts in the study. The authors have carefully checked the
code before submission to reduce this threat. We have also shared
the code publicly for everyone to check and improve.

6.3.2 External validity. The threats to external validity mainly lie
in the used pre-trained models in our study. In our experiments, we
adopted two popular pre-trained models of code but they may not
represent other pre-trained models such as C-BERT [4]. The current
implementation of model simplification in Compressor only sup-
ports the models upholding BERT architecture. We plan to extend
Compressor to compress other pre-trained models.

6.3.3 Construct validity. The threats to construct validity mainly
lie in the randomness of the measurements, especially when com-
puting the time consumption. To reduce the impact of randomness
in our study, we repeat each experiment multiple times and cal-
culate averages. We use the commonly used metrics to evaluate
the performance of our compression method, including the size of
compressed models, inference latency, etc. Thus, we believe that
this threat is minimal.

ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States Shi et al.

7 RELATEDWORK
This section describes the works that are related to this paper,
including the pre-trained models of code, and existing compression
techniques for pre-trained models.

7.1 Pre-trained Models of Code
Pre-trained models of code have recently become the state-of-the-
art in the field of code intelligence and benefited a broad range of
program understanding and generation tasks [10, 15, 20, 38, 42].
The pre-trainedmodels can be categorized into three types: encoder-
only, decoder-only, and encoder-decoder models.

Encoder-only models refer to pre-trained models that use only
the encoder part of a Transformer model like BERT-family models.
We have described two representatives of encoder-only models,
CodeBERT [10] and GraphCodeBERT [15], in Section 2.1. The two
models have demonstrated good performance across multiple soft-
ware engineering tasks, including API review [45], Stack Overflow
post analysis [16], etc. There are some other encoder-only pre-
trained models of code. Kanade et al. [21] employ the same model
architecture and pre-training objective as BERT and pre-train a
model called CuBERT on a large Python dataset. C-BERT [4] also
upholds BERT’s powerful architecture and pre-training objective
but is trained on the top-100 popular C language repositories in
GitHub. Both CuBERT and C-BERT can only process a single pro-
gramming language, limiting their usage scenarios. No studies
show that CuBERT and C-BERT can outperform CodeBERT and
GraphCodeBERT, while the CodeXGLUE benchmark [27] suggests
that the latter two are among the state-of-the-arts, so this work
investigates them in the experiment.

Decoder-only models are pre-trained models that employ only
the decoder part of a Transformer model. Decoder-only models
are designed for generative tasks like code completion [34]. Svy-
atkovskiy et al. [38] introduce GPT-C and MultiGPT-C, which
achieve impressive performance in the code completion task. These
two models are both variants of GPT-2 [31], but are trained on
large corpora containing one or multiple programming languages.
With the same model architecture and training objective, Lu et
al. [27] provide CodeGPT to help solve completion and generation
problems.

Encoder-decode models are pre-trained models that exploit the
complete Transformer architecture in pre-training. Based on the
BART [23] architecture, PLBART [1] is pre-trained on a large cor-
pus of Java and Python functions with natural language descrip-
tions collected from Github and StackOverflow. Wang et al. [42]
adopt the T5 [32] model architecture to produce CodeT5 for both
code understanding and generation tasks. CodeT5 proposes a novel
identifier-aware pre-training objective that trains the model to
distinguish which tokens are identifiers.

In our study, we focus on encoder-only pre-trained models since
Clark et al. [7] provide an easy-to-use tool to calculate the FLOPs of
these models. There has no such tool for other types of pre-trained
models, so we leave them in the future investigation list.

7.2 Compression of Pre-trained Models
A prominent line of work is devoted to compressing large pre-
trained models. As we discussed in Section 1, there exist three

groups of techniques: model pruning, model quantization, and
knowledge distillation.

Model pruning can be divided into unstructured pruning and
structured pruning [11]. The former works by replacing somemodel
parameters with zero. Gordon et al. [13] show that pruning 30%-40%
of BERT’s parameters does not affect the accuracy on downstream
tasks. Structured pruning removes architectural components (e.g.,
network layers or attention heads) in the model. Fan et al. [9] pro-
pose to drop layers randomly during training, which allows for
pruning some network layers at inference time without high accu-
racy degradation. Michel et al. [28] observe that a large percentage
of attention heads in pre-trained models can be removed without
significantly impacting performance. Unfortunately, model pruning
cannot effectively compress pre-trained models of code to be 3 MB.
Pre-trained models usually have an embedding table of around
150MB in addition to 12 (or 24) network layers. Even if all network
layers in the pre-trained model are removed, the model still has a
large embedding table. However, model pruning techniques can be
used to further reduce the size of compressed models obtained by
Compressor, which is also a future work of ours.

Model quantization techniques convert the model’s parameters
from 32-bit floating-point numbers into low-bit fixed-point num-
bers. Zafrir et al. [49] produce Q8BERT, which quantizes the net-
work parameters and activations functions to 8-bit integers when
fine-tuning BERT. Q8BERT can reduce the model size to 25% of
the original BERT size. Model quantization can reduce the model
size. However, even if we convert all parameters into 1-bit binary
values, the model can only be reduced to 32 times compared to
the original size, which is still much larger than 3 MB. Besides, a
quantized model is not faster in inference speed or consumes less
memory [11, 22, 48]. Instead, specialized low-bit supporting hard-
ware or optimized low-level processing libraries are required at the
inference time. Therefore, we discard them from our experiments.

We have described the knowledge distillation techniques for
pre-trained models in Section 2 and introduced the BiLSTMsoft as
our baseline in Section 4.3. We follow Svyatkovskiy et al. [39] to
set our targeted model size as 3 MB. Although several methods
of compressing BERT can be adopted to compress CodeBERT or
GraphCodeBERT, to our best knowledge, there are no studies that
promise to compress a large pre-trained model of around 500 MB
into such a tiny model of 3 MB. Most studies on compressing BERT
by knowledge distillation can only result in models of sizes between
100 and 200 MB [19, 33, 35, 43]. Chen et al. [5] and Xu et al. [44]
invariably adopt neural architecture search techniques to find a
student model to compress BERT, and both obtain models of sizes
between 20 and 40 MB. Zhao et al. [52] compress BERT to a 25 MB
model with smaller vocabulary and hidden dimensions. Tang et
al. [40] adopt a shallow BiLSTM network to distill the large pre-
trained models and obtain a 7.5 MB model with slight accuracy loss.
Our study only compares with the work of Tang et al. as it is the
only one that can compress pre-trained models close to 3 MB.

8 CONCLUSION AND FUTUREWORK
This paper proposes Compressor, a novel approach that can com-
press the pre-trained models of code into tiny models sacrificing

Compressing Pre-trained Models of Code into 3 MB ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States

only negligible degradation in model accuracy. Compressor lever-
ages a genetic algorithm (GA)-based strategy to maximize a model’s
Giga floating-point operations (GFLOPs) under a given model size
constraint. Then the small model learns from the larger pre-trained
models using knowledge distillation. We evaluate Compressor with
two state-of-the-art pre-trained models, i.e., CodeBERT and Graph-
CodeBERT, on the vulnerability prediction and clone detection
tasks. We use the proposed method to compress models to a size
(3 MB), which is 160× smaller than the original large models. The
results show that compressed CodeBERT and GraphCodeBERT are
4.31× and 4.15× faster than the original model at inference time,
respectively. More importantly, they maintain 96.15% and 97.74% of
the original performance on the vulnerability prediction task. They
even maintain higher ratios (99.20% and 97.52%) of the original
performance on the clone detection task.

In the future, we plan to extend Compressor to support models
of more architectures and pre-trained models of code. We also plan
to evaluate Compressor using additional datasets and tasks beyond
those considered in this paper.

ACKNOWLEDGMENTS
This research/project is supported by the National Research Founda-
tion, Singapore, under its IndustryAlignment Fund – Pre-positioning
(IAF-PP) Funding Initiative. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the au-
thor(s) and do not reflect the views of National Research Foundation,
Singapore.

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668.

[2] Gareth Ari Aye and Gail E. Kaiser. 2020. Sequence Model Design for Code
Completion in the Modern IDE. (2020). arXiv:2004.05249

[3] Lei Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?. In
Proceedings of the 27th International Conference on Neural Information Processing
Systems-Volume 2. 2654–2662.

[4] Luca Buratti, Saurabh Pujar, Mihaela A. Bornea, J. Scott McCarley, Yunhui Zheng,
Gaetano Rossiello, AlessandroMorari, Jim Laredo, Veronika Thost, Yufan Zhuang,
and Giacomo Domeniconi. 2020. Exploring Software Naturalness through Neural
Language Models. (2020). arXiv:2006.12641

[5] Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding,
Hongbo Deng, Jun Huang, Wei Lin, and Jingren Zhou. 2020. AdaBERT: Task-
Adaptive BERT Compression with Differentiable Neural Architecture Search.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020. 2463–2469.

[6] Jang Hyun Cho and Bharath Hariharan. 2019. On the Efficacy of Knowledge
Distillation. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019. IEEE, 4793–4801.

[7] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In 2020 8th International Conference on Learning Representations.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Volume 1 (Long and Short Papers). Association for Computational Linguistics,
4171–4186.

[9] Angela Fan, Edouard Grave, and Armand Joulin. 2020. Reducing Transformer
Depth on Demand with Structured Dropout. In 2020 8th International Conference
on Learning Representations.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020. 1536–1547.

[11] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan
Sajjad, Preslav Nakov, Deming Chen, and Marianne Winslett. 2021. Compressing
Large-Scale Transformer-Based Models: A Case Study on BERT. Transactions of
the Association for Computational Linguistics 9 (09 2021), 1061–1080.

[12] Mengya Gao, YujunWang, and LiangWan. 2021. Residual error based knowledge
distillation. Neurocomputing 433 (2021), 154–161.

[13] Mitchell Gordon, Kevin Duh, and Nicholas Andrews. 2020. Compressing BERT:
Studying the Effects ofWeight Pruning on Transfer Learning. In Proceedings of the
5th Workshop on Representation Learning for NLP. Association for Computational
Linguistics, Online, 143–155.

[14] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129, 6 (2021),
1789–1819.

[15] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. In 2021 9th International Conference on Learning Representations.

[16] Junda He, Bowen Xu, Zhou Yang, DongGyun Han, Chengran Yang, and David Lo.
2022. PTM4Tag: Sharpening Tag Recommendation of Stack Overflow Posts with
Pre-trained Models. In 2022 IEEE/ACM 30th International Conference on Program
Comprehension (ICPC). IEEE Computer Society, Los Alamitos, CA, USA, 1–11.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the Knowledge
in a Neural Network. In 2015 NIPS Deep Learning and Representation Learning
Workshop.

[18] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. (2019). arXiv:1909.09436

[19] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang
Wang, and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural Language Un-
derstanding. In Findings of the Association for Computational Linguistics: EMNLP
2020. 4163–4174.

[20] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and Evaluating Contextual Embedding of Source Code. In Proceedings
of the 37th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 119). PMLR, 5110–5121.

[21] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and Evaluating Contextual Embedding of Source Code. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119). PMLR,
5110–5121.

[22] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
2021. I-BERT: Integer-only BERT Quantization. In Proceedings of the 38th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 139). PMLR, 5506–5518.

[23] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, Online, 7871–7880.

[24] Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and Qi Ju. 2020.
FastBERT: a Self-distilling BERT with Adaptive Inference Time. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. Associa-
tion for Computational Linguistics, Online, 6035–6044.

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[26] Yongcheng Liu, Lu Sheng, Jing Shao, Junjie Yan, Shiming Xiang, and Chunhong
Pan. 2018. Multi-label image classification via knowledge distillation fromweakly-
supervised detection. In Proceedings of the 26th ACM international conference on
Multimedia. 700–708.

[27] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understand-
ing and Generation. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

[28] Paul Michel, Omer Levy, and Graham Neubig. 2019. Are Sixteen Heads Really
Better than One?. In Advances in Neural Information Processing Systems, Vol. 32.
Curran Associates, Inc.

[29] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Mat-
sukawa, and Hassan Ghasemzadeh. 2020. Improved Knowledge Distillation via
Teacher Assistant. Proceedings of the AAAI Conference on Artificial Intelligence
34, 04 (Apr. 2020), 5191–5198.

[30] Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012. A Universal Part-of-
Speech Tagset. In Proceedings of the Eighth International Conference on Language
Resources and Evaluation (LREC’12). 2089–2096.

https://arxiv.org/abs/2004.05249
https://arxiv.org/abs/2006.12641
https://arxiv.org/abs/1909.09436

ASE ’22, 10 - 14 October, 2022, Ann Arbor, Michigan, United States Shi et al.

[31] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[32] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21, 140 (2020), 1–67.

[33] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter.

[34] Jieke Shi, Zhou Yang, Junda He, Bowen Xu, and David Lo. 2022. Can Identifier
Splitting Improve Open-Vocabulary Language Model of Code?. In 2022 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
1134–1138.

[35] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. Patient Knowledge Dis-
tillation for BERT Model Compression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP). Association for
Computational Linguistics, Hong Kong, China, 4323–4332.

[36] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny
Zhou. 2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited
Devices. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational Linguistics, Online.

[37] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal K. Roy, and Moham-
mad Mamun Mia. 2014. Towards a Big Data Curated Benchmark of Inter-project
Code Clones. In 2014 IEEE International Conference on Software Maintenance and
Evolution. 476–480.

[38] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
IntelliCode Compose: Code Generation Using Transformer. In Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. Association for Computing
Machinery, New York, NY, USA, 1433–1443.

[39] Alexey Svyatkovskiy, Sebastian Lee, Anna Hadjitofi, Maik Riechert, Juliana Vi-
cente Franco, and Miltiadis Allamanis. 2021. Fast and Memory-Efficient Neural
Code Completion. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). 329–340.

[40] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy
Lin. 2019. Distilling Task-Specific Knowledge from BERT into Simple Neural
Networks. (2019). arXiv:1903.12136

[41] Vladimir Vapnik. 1999. The nature of statistical learning theory. Springer science
& business media.

[42] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing. 8696–8708.
[43] Canwen Xu, Wangchunshu Zhou, Tao Ge, FuruWei, and Ming Zhou. 2020. BERT-

of-Theseus: Compressing BERT by Progressive Module Replacing. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Online, 7859–7869.

[44] Jin Xu, Xu Tan, Renqian Luo, Kaitao Song, Jian Li, Tao Qin, and Tie-Yan Liu.
2021. NAS-BERT: Task-Agnostic and Adaptive-Size BERT Compression with
Neural Architecture Search. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (Virtual Event, Singapore). Association
for Computing Machinery, New York, NY, USA, 1933–1943.

[45] Chengran Yang, Bowen Xu, Junaed Younus Khan, Gias Uddin, Donggyun Han,
Zhou Yang, and David Lo. 2022. Aspect-Based API Review Classification: How Far
Can Pre-Trained Transformer Model Go?. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). 385–395.

[46] Zhou Yang, Jieke Shi, JundaHe, andDavid Lo. 2022. Natural Attack for Pre-trained
Models of Code. In 2022 IEEE/ACM 44rd International Conference on Software
Engineering (ICSE).

[47] Ji Won Yoon, Hyeonseung Lee, Hyung Yong Kim, Won Ik Cho, and Nam Soo Kim.
2021. TutorNet: Towards flexible knowledge distillation for end-to-end speech
recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing
29 (2021), 1626–1638.

[48] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
Gobo: Quantizing attention-based nlp models for low latency and energy ef-
ficient inference. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 811–824.

[49] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. 2019. Q8bert:
Quantized 8bit bert. In 2019 Fifth Workshop on Energy Efficient Machine Learning
and Cognitive Computing-NeurIPS Edition (EMC2-NIPS). IEEE, 36–39.

[50] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu.
2020. TernaryBERT: Distillation-aware Ultra-low Bit BERT. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, Online, 509–521.

[51] Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. 2022. Decoupled
Knowledge Distillation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 11953–11962.

[52] Sanqiang Zhao, Raghav Gupta, Yang Song, and Denny Zhou. 2021. Extremely
Small BERT Models from Mixed-Vocabulary Training. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguis-
tics: Main Volume. Association for Computational Linguistics, Online, 2753–2759.

[53] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems. 10197–10207.

https://arxiv.org/abs/1903.12136

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Pre-trained Models of Code
	2.2 Knowledge Distillation

	3 Methodology
	3.1 Overview
	3.2 Problem Search Space
	3.3 GA-guided Model Simplification
	3.4 Distillation with Unlabeled Data

	4 Experimental Settings
	4.1 Implementation and Configurations.
	4.2 Datasets and Tasks
	4.3 Evaluation Metric and Baseline

	5 Experimental Results
	5.1 RQ1: Accuracy Loss of Compressor
	5.2 RQ2: Efficiency of Compressed Models
	5.3 RQ3: Time Cost of Compressor

	6 Discussions
	6.1 The Impact of Compressed Model Sizes
	6.2 Extensions of Compressor
	6.3 Threats to Validity

	7 Related Work
	7.1 Pre-trained Models of Code
	7.2 Compression of Pre-trained Models

	8 Conclusion and Future Work
	Acknowledgments
	References

