Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM

A Reproducibility Study

Bowen Xu, Amirreza Shirani, David Lo, Mohammad Amin Alipour
KSMUL Biioision & SMU... BrHo0sTon

UNIVERST

“Try-with-simple” Practice

' “Everything should be made
R as simple as possible.
But not simpler.”

Albert Einstein

2/21

“Try-with-simple” Practice

Are Deep Neural Networks the Best Choice
for Modeling Source Code?

Vincent J. Hellendoorn
Computer Science Dept., UC Davis
Davis, CA, USA 95616
vhellendoorn@ucdavis.edu

ABSTRACT

Current statistical language modeling techniques, including deep-
learning based models, have proven to be quite effective for source
code. We argue here that the special properties of source code can
be exploited for further improvements. In this work, we enhance
established language modeling approaches to handle the special
challenges of modeling source code, such as: frequent changes,
larger, changing vocabularies, deeply nested scopes, etc. We present
a fast, nested language modeling toolkit specifically designed for
software, with the ability to add & remove text, and mix & swap out
many models. Specifically, we improve upon prior cache-modeling
work and present a model with a much more expansive, multi-level
notion of locality that we show to be well-suited for modeling
software. We present results on varying corpora in comparison
with traditional N-gram, as well as RNN, and LSTM deep-learning
language models, and release all our source code for public use.
Our evaluations suggest that carefully adapting N-gram models for
source code can yield performance that surpasses even RNN and
LSTM based deep-learning models.

Premkumar Devanbu
Computer Science Dept., UC Davis
Davis, CA, USA 95616
ptdevanbu@ucdavis.edu

Statistical models from NLP, estimated over the large volumes of
code available in GitHub, have led to a wide range of applications
in software engineering. High-performance language models are
widely used to improve performance on NLP-related tasks, such as
translation, speech-recognition, and query completion; similarly,
better language models for source code are known to improve per-
formance in tasks such as code completion [15]. Developing models
that can address (and exploit) the special properties of source code
is central to this enterprise.

Language models for NLP have been developed over decades,
and are highly refined; however, many of the design decisions
baked-into modern NLP language models are finely-wrought to
exploit properties of natural language corpora. These properties
aren’t always relevant to source code, so that adapting NLP models
to the special features of source code can be helpful. We discuss 3
important issues and their modeling implications in detail below.
Unlimited Vocabulary Code and NL can both have an unbounded
vocabulary; however, in NL corpora, the vocabulary usually sat-
urates quickly: when scanning through a large NL corpus, pretty

[FSE'17, Vincent J. Hellendoorn and
Premkumar Devanbul]

Deep Learning (RNN) vs. N-gram

Our evaluations suggest that
carefully adapting N-gram models for
source code can yield performance
that surpasses even RNN and
LSTM based deep-learning models.

3/21

“Try-with-simple” Practice

Neural-Machine-Translation-Based Commit Message
Generation: How Far Are We?

Zhongxin Liu Xin Xia Ahmed E. Hassan
Zhejiang University Monash University Queen’s University
China Australia Canada
liu_zx@zju.edu.cn xin.xia@monash.edu ahmed@cs.queensu.ca
David Lo Zhenchang Xing Xinyu Wang
Singapore Management University Australian National University Zhejiang University
Singapore Australia China
davidlo@smu.edu.sg zhenchang xing@anu.edu.au wangxinyu@zju.edu.cn
ABSTRACT KEYWORDS

Commit messages can be regarded as the documentation of soft-
ware changes. These messages describe the content and purposes
of changes, hence are useful for program comprehension and soft-
ware maintenance. However, due to the lack of time and direct
motivation, commit messages sometimes are neglected by develop-
ers. To address this problem, Jiang et al. proposed an approach (we
refer to it as NMT), which leverages a neural machine translation
algorithm to automatically generate short commit messages from
code. The reported performance of their approach is promising,
however, they did not explore why their approach performs well.
Thus, in this paper, we first perform an in-depth analysis of their

Commit message generation, Nearest neighbor algorithm, Neural
machine translation

ACM Reference Format:

Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing,
and Xinyu Wang, 2018. Neural-Machine-Translation-Based Commit Mes-
sage Generation: How Far Are We?. In Proceedings of the 2018 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE '18), Sep-
tember 3-7, 2018, Montpellier, France. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3238147.3238190

[ASE’18, Liu et al., Distinguish Paper]

Deep Learning (RNN) vs. KNN

Our study shows that it is worth
trying simple and fast methods
before applying complicated and
time-consuming techniques on

software engineering tasks. ’ ’

4/21

Does “Try-with-simple” practice still hold
on different sizes of datasets?

5/21

A Reproducibility Study on
Prediction of Relatedness in Stack
Overflow

1. Build a larger dataset.
2. Reproduce state-of-the-art approaches.
3. Introduce a simpler and faster approach.

6/21

Relatedness in Stack Overflow

Iterating over a stack (reverse list), is there an isempty() method? r

I) :
What's the best way to iterate over a stack in Python? : D U pl ICate 1
I a=1[1,2,3,4] |
Question | ¢ i, P
print a.pop()
A # prints 4, 3, 2, 1 in sequence r_________-i
|
1 | couldn't find an isempty method, and checking the length each time seems wrong somehow. >| D i re Ct 1
python stack iteration I I
L . 1
- — = []
How do | check if a list is empty~ i |
1 1
rInd
Q u e Sti O n For example, if passed the following: n I re Ct |
1
2836 a= 1 Lo o oo oo oo oo o o mm mm
B How do | check to see if a is empty?

python list is-empty

|
' Isolated :
|

Multiclass relatedness would support] beommmmmees
more targeted information needs.

[ASE’16, Xu et al] [

7/21

Problem Formulation - Multi-class Classification

ETralnlngj r----------
Data ——> Duplicate !

Stack Overflow b e e o
Question A V Fmmmmmm— e

Prediction > Direct
L/ Model Fmmmmmmm e

Stack Overflow
Question B ! |

[ASE’16, Xu et al.] —> Isolated |

8/21

Related works

CNN Model Basic SVM
[A%'I;l:\é I\),(Il?geall] Effectiveness Win Lose
Efficiency .
(Training time) Lose Win
| “Try-with-simple” Practice
CNN Model | Tuning SVM
Tuning SVM Effectiveness Lose Win
[FSE'17, Wei Fu and Tim .
Menzies] Efficiency Lose Win
(Training time)

9/21

Large Dataset

Original Dataset
[ASE’16, Xu et al.]

Large Dataset

Size (Pairs in total)

6,400

40,000

Quality

29
~ n’“” £
%8

10/21

Experiment 1

How well do CNN Model and Tuning
SVM perform on large dataset?
Tuning SVM still better?

Effectiveness on Large Dataset

Direct Indirect

Duplicate Link Link Isolated Overall
CNN MoDEL 0.55 0.33 0.32 0.79 0.50
Precision TuNING SVM 0.49 0.33 0.49 0.68 0.49
CNN MoDEL 0.21 0.62 0.39 0.41 0.41
Recall TuNING SVM 0.59 0.22 0.56 0.67 0.51
CNN MoDEL 0.31 0.43 0.35 0.54 0.41
F1-Score = TuNING SVM 0.54 0.26 0.52 0.68 0.50

[Overall, Tuning SVM still outperforms CNN. J

12/21

Efficiency (Training Cost) on Large Dataset

Time
CNN MobDEL. 15h 21m 24s

TunING SVM 38h 24m 46s

13/21

Q: Why Tuning SVM costs much longer time
than CNN Model on the large dataset?

A: With the growth of dataset, Tuning SVM uses a large

number of features, adapts several kernels (e.g., RBF

kernel) and regularization parameters one by one to tune
the SVM.

14/21

Experiment 2

Can we propose another SVM-based
approach that performs better and
faster?

Soft SVM - A Lightweight Alternative

Soft-Cosine Similarity Measure

Semantic relations

(Word Embedding)

=

Edit-distance

based relations

Soft-cosine(a,b) =

[SemEval'17, Delphine Charlet
and Geraldine Damnati]

TeW, | TyW,
TW, M4 my, j—
TW, [my, My,
LijNam;b,
\/z SN aimijaj\/z S, Nbmyb,

16/21

Soft SVM vs. Tuning SVM

Soft SVM Tuning SVM
Similarity Soft-cosine Sv=Wv,eWv,®...Wv,
Measurement
SVM Kernels 1 (Linear) 4 (Llneqr, RBF, Poly,
Sigmod)

[SemEval'17, Delphine Charlet

and Geraldine Damnati]

17/21

Effectiveness of Soft SVM

Duplicate E;i(:t Inf;i(:t Isolated Overall
CNN MODEL 0.55 0.33 0.32 0.79 0.50
Precision TuNING SVM 0.49 0.33 0.49 0.68 0.49
SorT SVM 0.51 0.45 0.42 0.75 0.53
CNN MoODEL 0.21 0.62 0.39 0.41 0.41
Recall TuNiNG SVM 0.59 0.22 0.56 0.67 0.51
SorT SVM 0.48 0.21 0.58 0.90 0.54
CNN MoODEL 0.31 0.43 0.35 0.54 0.41
F1-Score TuNING SVM 0.54 0.26 0.52 0.68 0.50
SorT SVM 0.50 0.29 0.49 0.82 0.52

18/21

Efficiency (Training Cost) of Soft SVM

Time
CNN MobpEeL. 15h 21m 24s
TuNING SVM 38h 24m 46s
SorFT SVM 2h 54m

19/21

Conclusion

Large Dataset

Efficiency (Training Cost) on Large Dataset

Original Dataset
[ASE'16, Xu et al.]

Large Dataset

Time
CNN MobpEL. 15h 21m 24s

Size (Pairs in total) 6,400 40,000
-)‘_40. . o
Quality 'k . <. ¥

TuNING SVM 38h 24m 46s

Effectiveness of Soft SVM

. Direct Indirect
Duplicate Link

Isolated Overall

Link
CNN MoODEL 0.55 0.33 0.32 0.79 0.50
Precision TUNING SVM 0.49 0.33 0.49 0.68 0.49
SorT SVM 0.51 0.45 0.42 0.75 0.53
CNN MobDEL 0.21 0.62 0.39 0.41 0.41
Recall TuNING SVM 0.59 0.22 0.56 0.67 0.51
SorT SVM 0.48 0.21 0.58 0.90 0.54
CNN MoDEL 0.31 0.43 0.35 0.54 0.41
F1-Score TuNING SVM 0.54 0.26 0.52 0.68 0.50
SorT SVM 0.50 0.29 0.49 0.82 0.52

Efficiency (Training Cost) of Soft SVM

Time
CNN MopEL. 15h 21m 24s
TuNING SVM 38h 24m 46s

SoFT SVM 2h 54m

20/21

Implication

1. “Try-with-simple” practice still holds.

2. Larger dataset may uncover new limitations.

3. The performance of the task Prediction of Relatedness in
Stack Overflow still has room to improve. Consideration of
more features (e.g., tags) may be an easier way to do it.

21/21

Thanks & QA!

All experiment data can be found here:
https.//qithub.com/XBWer/ESEMZ2018

