
Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM

A Reproducibility Study

Bowen Xu
∗

Singapore Management University

bowenxu.2017@smu.edu.sg

Amirreza Shirani
∗

University of Houston

ashirani@uh.edu

David Lo

Singapore Management University

davidlo@smu.edu.sg

Mohammad Amin Alipour

University of Houston

alipour@cs.uh.edu

ABSTRACT

Background Xu et al. used a deep neural network (DNN) tech-

nique to classify the degree of relatedness between two knowledge

units (question-answer threads) on Stack Overflow. More recently,

extending Xu et al.’s work, Fu and Menzies proposed a simpler clas-

sification technique based on a fine-tuned support vector machine

(SVM) that achieves similar performance but in a much shorter

time. Thus, they suggested that researchers need to compare their

sophisticated methods against simpler alternatives.

Aim The aim of this work is to replicate the previous studies

and further investigate the validity of Fu and Menzies’ claim by

evaluating the DNN- and SVM-based approaches on a larger dataset.

We also compare the effectiveness of these two approaches against

SimBow, a lightweight SVM-based method that was previously

used for general community question-answering.

Method We (1) collect a large dataset containing knowledge units

from Stack Overflow, (2) show the value of the new dataset address-

ing shortcomings of the original one, (3) re-evaluate both the DNN-

and SVM-based approaches on the new dataset, and (4) compare

the performance of the two approaches against that of SimBow.

Results Wefind that: (1) there are several limitations in the original

dataset used in the previous studies, (2) effectiveness of both Xu et

al.’s and Fu and Menzies’ approaches (as measured using F1-score)

drop sharply on the new dataset, (3) similar to the previous finding,

performance of SVM-based approaches (Fu and Menzies’ approach

and SimBow) are slightly better than the DNN-based approach, (4)

contrary to the previous findings, Fu and Menzies’ approach runs

much slower than DNN-based approach on the larger dataset – its

runtime grows sharply with increase in dataset size, and (5) SimBow

outperforms both Xu et al. and Fu andMenzies’ approaches in terms

of runtime.

∗
Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEM ’18, October 11–12, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5823-1/18/10. . . $15.00

https://doi.org/10.1145/3239235.3240503

Conclusion We conclude that, for this task, simpler approaches

based on SVM performs adequately well. We also illustrate the

challenges brought by the increased size of the dataset and show

the benefit of a lightweight SVM-based approach for this task.

CCS CONCEPTS

•Theory of computation→ Support vectormachines; •Com-

puting methodologies → Neural networks; • Software and

its engineering→ Software libraries and repositories;

KEYWORDS

Relatedness Prediction, Deep Learning, Support Vector Machine

ACM Reference format:

Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour.

2018. Prediction of Relatedness in Stack Overflow: Deep Learning vs. SVM .

In Proceedings of ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), Oulu, Finland, October 11–12, 2018
(ESEM ’18), 10 pages.
https://doi.org/10.1145/3239235.3240503

1 INTRODUCTION

Using machine learning techniques in software engineering re-

search has been commonplace, such as [9, 22, 30] to name few. The

applicability of machine learning techniques depends on the hy-

pothesis class that can be represented by them. That is, the functions

that they can represent. For examples, linear regression models are

very effective for linearly separable problems (i.e., classes can be

separated with a single decision surface), but they cannot be used

for problems with higher complexity.

Neural networks constitute a powerful class of machine learning

models with large hypothesis class. For example, a multilayer feed-

forward network is called a universal approximator [7]; that is,

it can essentially represent any function. Deep neural networks

methods are representation learning methods that allow a method

to use raw data and extract the representation of the data [13]; it

can substantially reduce the burden of feature engineering. Deep

learning has produced promising results in complex tasks such as

object detection [23], natural language understanding [19], text

classification [11] and many more.

Nowadays, there has been a surge in adoption of deep learning
1

in software engineering research. It has been applied successfully

1
We use two terms deep learning, and deep neural networks interchangeably.

1

https://doi.org/10.1145/3239235.3240503
https://doi.org/10.1145/3239235.3240503

ESEM ’18, October 11–12, 2018, Oulu, Finland Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour

to problems such as [6, 30, 33]. A common issue raised in the appli-

cation of deep learning techniques is that sometimes deep neural

networks are applied to problems that do not require the rich,

complex hypothesis class that deep learning offers, and simpler

techniques can be used as effectively instead. The simplicity of

models is desirable for two main reasons. First, simpler models are

easier to interpret and comprehend and comprehension of relations

between variables can afford useful insights about the underlying

phenomena. Second, simpler models can be trained more efficiently,

and potentially with smaller dataset.

Recently, Xu et al. [30] and Fu and Menziess [4] investigated the

problem of predicting relatedness between Stack Overflow knowl-

edge units. Xu et al. use deep neural networks (DNN) for the task,

while Fu and Menzies [4] use a support vector machine (SVM)

tuned by using differential evolution (DE). Fu and Menzies reported

benefits of using the simpler model; that is, similar accuracy can be

achieved with lower runtime cost. In this paper, we replicate the

evaluation of the two techniques on the same software engineering

task, but using a much larger dataset. Our goal in this study is

to evaluate the consistency of claims made by these prior studies.

Replication studies are often instrumental to assess the validity of

previous findings, uncover new insights, as well as investigate the

impact of some threats to validity affecting prior work [2].

In our experiments, we find that the dataset used to evaluate

both approaches has a number of shortcomings. Once we addressed

those shortcomings, by creating a larger dataset that is subjected

to a more thorough data cleaning step, we observed that the per-

formance of the both techniques (evaluated using F1-score) drops

sharply by more than 20%. We found that still Fu andMenzies’ SVM-

based model performs slightly better than Xu et al.’s DNN-based

model – consistent with the findings in [4]. However, in terms of

time efficiency, the runtime cost required to tune SVM using DE

grows by a large amount when the dataset is increased in size. As

a result, the performance benefit of using Fu and Menzies’ SVM-

based model is no longer observed when it is evaluated on the new

dataset. Addressing this drawback, we adapt a lightweight award-

winning SVM-based model named SimBow [3] for the task and

evaluate its effectiveness. We demonstrate that SimBow requires

much less runtime cost as compared to Xu et al. and Fu and Menzies

approaches, while achieving similar accuracy.

The contributions of this work are as follows:

� We replicate two previously presented studies on predict-

ing relatedness of Stack Overflow knowledge units using a

much larger and cleaner dataset. Our study confirms some

findings reported in prior works, highlights and explains

some discrepancies, and points out to challenges unsolved

by prior works.

� To address one of the challenges (i.e., high runtime cost of

Xu et al.’s and Fu and Menzies’ approaches), we investigate

the value of an alternative lightweight method (SimBow).

We demonstrate that it can outperform prior baselines in

terms of runtime cost by a large margin, while achieving a

similar accuracy.

� We release source code for SimBow and the new dataset,

along with the experiment results at https://github.com/

XBWer/ESEM2018.

Organization The rest of this paper is organized as follows. Sec-

tion 2 defines the problem of predicting relatedness of Stack Over-

flow knowledge units and the evaluation metrics. Sections 3 pro-

vides replication of the two approaches proposed by Xu et al. and

Fu and Menzies along with one new adopted approach SimBow.

Section 4 explains the creation process of the dataset. Section 5

presents the research questions and corresponding results. Section

6 discusses the possible shortcomings with the previous dataset

used in Xu et al. and Fu and Menzies’s studies. Section 8 describes

related works. Section 9 concludes the paper.

2 TASK AND EVALUATION METRICS

2.1 Predicting Relatedness in Stack Overflow

Software developers must solve numerous programming, algorith-

mic, and system problems to write, maintain, or deploy programs.

Knowledge about these problems is dispersed in many books and

user manuals that are hard to locate and use. Therefore, develop-

ers often use technical forums to use crowd’s knowledge and seek

solutions to those problems.

Among technical forums, Stack Overflow is the most popular

resource for programming related discussions. Stack Overflow repu-

tation system has attracted many developers to participate actively

and contribute to this forum. Most Stack Overflow questions are

answered within 11 minutes after posting them [15]. Stack Over-

flow allows users to search, post, or answer questions. It also allows

users to vote up and down questions and answers. Nowadays, Stack

Overflow is an indispensable tool for programmers; about 50 mil-

lion developers visit it monthly, and over 85% users visit Stack

Overflow more than four times a week.
2

Following Xu et al. [30], we refer to a Stack Overflow thread

consisting of a question along with all its answers as a knowledge
unit (KU). Despite Stack Overflow’s vibrant community, knowledge

in Stack Overflow is disconnected and developers must search for

related knowledge units that provide additional insights about their
problem and possible solutions that can be very time-consuming.

Figure 1: Linked Knowledge Units by URL Sharing

2
Stack Overflow 2018 Developer Survey, https://insights.stackoverflow.com/survey/

2018/

2

https://github.com/XBWer/ESEM2018
https://github.com/XBWer/ESEM2018
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/

Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM ESEM '18, October 11�12, 2018, Oulu, Finland

Table 1: Classes of Knowledge Unit Pairs

Link Type De�nition
Duplicate Two knowledge units discuss the same question in

di�erent ways, and can be answered by the same
answer.

Direct One knowledge unit can help solve the problem
in the other knowledge unit, for example, by ex-
plaining certain concepts, providing examples, or
covering a sub-step for solving a complex problem.

Indirect One knowledge unit provides related information,
but it does not directly answer the question in the
other knowledge unit.

Isolated The two knowledge units are not semantically re-
lated.

Identifying relatedness of knowledge units would accelerate de-
veloper's ability in navigating the rich and yet diverse information
in Stack Over�ow. Thus, Stack Over�ow encourages developers to
link related knowledge units by URL sharing [20]. Figure 1 shows a
real example of how two knowledge units are linked by developers.
A network of linkable knowledge units constitutes aknowledge unit
networkover time through URL sharing [32]. As shown in Table 1,
Xu et al. divided all the relationship between two knowledge units
into four categories based on relatedness, i.e., duplicate, direct, in-
direct and isolated [30]. To identify related contents, a model can
be trained to predict the relatedness between KU pairs. There are
multiple challenges for predicting relatedness of KUs in Stack Over-
�ow. First, there is informal, redundant, irrelevant information in
KUs. Secondly, in addition to natural text, KUs contain source code,
which is of a di�erent nature. Thirdly, di�erent developers exhibit
di�erent discursive habits in posting questions and answers; e.g.,
some questions or answers are very terse, while some are very long
and tend to include much information.

Table 2 shows real examples of pairs of knowledge units with dif-
ferent degrees of relatedness. The original knowledge unit is talking
aboutString comparison in Java. Another knowledge unit on Stack
Over�ow is labeled as duplicate with the original knowledge unit
because they actually talk about the same problem but in di�erent
ways. Thus, the answers of original knowledge unit and duplicate
knowledge unit can be shared. Another knowledge unit talks about
a similar but not identical problem, i.e.,how does == works in case
of String concatenation in Java. Thus, based on the de�nition, there
is adirectrelationship between the two knowledge units. Consider
yet another knowledge unit that discussesmemory change during
string concatenation in Java. We regard it as an indirect knowledge
unit to the original knowledge unit, because it is directly linked to
one of the direct knowledge units of the original knowledge unit.
The order of semantic relatedness between two knowledge units is:
Duplicate> Direct> Indirect> Isolated. For the details of dataset
building, please refer to Section 4.

2.2 Evaluation Metrics
To evaluate the performance of the proposed approaches in the
prediction of relatedness between knowledge units, we use the
same metrics as used in previous works [4, 30], i.e., precision, recall

and f1-score. In this task, the classi�er has to classify each pair of
knowledge units into four classes. Table 3 depicts the confusion
metrics when we have four classes.

Base on the confusion matrix, the de�nitions of precision, recall
and F1-score are as below:
Precisionfor a classi is the proportion of knowledge-unit pairs
correctly classi�ed as the classi among all pairs classi�ed as the
classi .

Precisionj =
Ci iÍ

1� j � K Cj i

Recallfor a classi is the percentage of knowledge-unit pairs cor-
rectly classi�ed as the classi compared with the number of ground
truth labelLi in the dataset.

Recalli =
Ci iÍ

1� j � K Ci j

F1-scorefor a classi is a harmonic mean of precision and recall for
that class.

F1i =
2 � Precisioni � Recalli

Precisioni + Recalli

3 REPLICATION
This section overviews the techniques for predicting relatedness.
The techniques are as follows, we refer to Xu et al., Fu and Menzies,
and SimBow techniques asCNN Model, Tuning SVM, andSoft
SVM, respectively.

� CNN Model , Xu et al. [30] : Appeared in ASE 2016.
� Tuning SVM , Fu and Menzies [4] : Appeared in FSE 2017.
� Soft SVM , SimBow [3] : Appeared in SemEval-2017 Task

3: Community Question Answering.

3.1 Xu et al.'s Study (CNN Model)
At ASE 2016, Xu et al. [30] presented the task of predicting related-
ness of knowledge units, and proposed a deep learning approach
for it. In this section, we brie�y review their approach. For more
technical details, please refer to the original paper [30].

Deep learning is a class of machine learning techniques that can
be used for classi�cation or regression tasks. Deep learning has
produced impressive results in domains such as image processing
and natural language processing where feature engineering has
been traditionally challenging.

Deep learning trains a weighted neural network for the learning
task. A neural network comprises a group of interconnectedneu-
ronsorganized in multiple layers. A neuron is the smallest unit of
computation in the networks. Each neuron performs a dot product
on the input vectorX and weights vectorW, then, it adds the bias
b; �nally, it applies the activation functionf (or non-linearity) to
the result.
Overview of Approach To predict the relatedness between knowl-
edge units, Xu et al. built a convolutional neural network (CNN)
model [14] using a word embedding trained on Stack Over�ow data
to capture low- and high-level representations of KU pairs.

To extract low level (i.e., word-level) semantic features, each
word is represented by a 200-dimension vector by utilizing a word2vec
model [16]. The word2vec model is created using a corpus of 100,000
Java knowledge units (i.e., posts tagged with �java�). And contin-
uous skip-gram model [16] is used to learn domain-speci�c word

3

ESEM '18, October 11�12, 2018, Oulu, Finland Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour

Table 2: Example of Duplicate, Direct, Indirect Knowledge Units Pairs

[Original KU] (https://stackover�ow.com/questions/513832)
Title How do I compare strings in Java?

Description
I've been using the == operator in my program to compare all my strings so far.
However, I ran into a bug, changed one of them into .equals() instead, and it �xed the bug.
Is == bad? When should it and should it not be used? What's the di�erence?

[Duplicate KU] (https://stackover�ow.com/questions/3281448)
Title Strings in Java : equals vs ==

Description

String s1 = "andrei"; String s2 = "andrei"; String s3 = s2.toString();
System.out.println((s1==s2) + " " + (s2==s3));
Giving the following code why is the second comparison s2 == s3 true ? What is actually s2.toString() returning ?
Where is actually located (s2.toString()) ?

[Direct KU] (https://stackover�ow.com/questions/34509566)
Title �==� in case of String concatenation in Java

Description

String a = "devender"; String b = "devender"; String c = "dev"; String d = "dev" + "ender";
String e = c + "ender";
System.out.println(a == b); //case 1: o/p true
System.out.println(a == d); //case 2: o/p true
System.out.println(a == e); //case 3: o/p false
a & b both are pointing to the same String Literal in string constant pool. So true in case 1

String d = "dev" + "ender";
should be internally using something like -

String d = new StringBuilder().append("dev").append("ender").toString();
How a & d are pointing to the same reference & not a & e ?

[Indirect KU] (https://stackover�ow.com/questions/11989261)
Title Does concatenating strings in Java always lead to new strings being created in memory?

Description

I have a long string that doesn't �t the width of the screen. For eg.

String longString = "This string is very long...";
To make it easier to read, I thought of writing it this way -

String longString = "This string is very long..." + "This string is very long..." + ...;
However, I realized that the second way uses string concatenation and will create 5 new strings in memory and this
might lead to a performance hit. Is this the case? Or would the compiler be smart enough to �gure out that all I need
is really a single string? How could I avoid doing this?

Table 3: Confusion Matrix

Predicted as
C1 C2 C3 C4

Actual Label

C1 C11 C12 C13 C14
C2 C21 C22 C23 C24
C3 C31 C32 C33 C34
C4 C41 C42 C43 C44

embeddings from the corpora. The embeddings for the words were
initialized using the trained word embeddings. Zero vector is used
for padding the shorter sequences and representing the missing
words in the pre-trained vectors.

Then, a convolutional neural network model is built on top of
that to extract high level (i.e., document-level) semantic features.
The convolutional neural network is a class of deep learning tech-
niques, feed-forward arti�cial neural networks. A convolutional

neural network consists of an input and an output layer, as well
as hidden layers. The hidden layer's parameters consist of a set of
learnable �lters. As shown as Figure 2, �lters of �ve di�erent win-
dow sizes (the number of adjacent words considered jointly, in their
case, i.e., 1, 3, 5, 7, 9) are utilized to capture the most informative
n-grams in the text. For each window size, there are 128 �lters to
learn complementary features from the same word windows.Relu
is used as activation function (i.e.,Relu¹xº = max¹0;xº) and Max
Pooling is used in the sampling process.

The input of the model is two high-dimensional text vectors of
two given knowledge units and the output are two low-dimensional
semantic feature vectors. The relatedness between two knowledge
units are computed as the following equation:

Relatedness¹KUx ;KUy º =
f vx � f vy

kf vx k

 f vy

4

	Abstract
	1 Introduction
	2 Task and Evaluation Metrics
	2.1 Predicting Relatedness in Stack Overflow
	2.2 Evaluation Metrics

	3 Replication
	3.1 Xu et al.'s Study (CNN Model)
	3.2 Fu and Menzies' Study (Tuning SVM)
	3.3 SimBow: A Lightweight Alternative (Soft SVM)

	4 Data
	4.1 Creating LargeDataset
	4.2 Characteristics of the new dataset

	5 Research Questions and Results
	5.1 Research Questions
	5.2 Results

	6 Discussion
	6.1 Shortcomings of the original dataset
	6.2 Performance of techniques

	7 Threats to Validity
	8 Related Work
	8.1 Knowledge Analysis in Stack Overflow
	8.2 Traditional Machine Learning v.s. Deep Learning

	9 Conclusion
	References

