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ABSTRACT

Software Q&A sites (like Stack Overflow) play an essential role in
developers’ day-to-day work for problem-solving. Although search
engines (like Google) are widely used to obtain a list of relevant
posts for technical problems, we observed that the redundant rele-
vant posts and sheer amount of information barriers developers to
digest and identify the useful answers. In this paper, we propose
a tool AnswerBot which enables to automatically generate an
answer summary for a technical problem. AnswerBot consists of
three main stages, (1) relevant question retrieval, (2) useful answer
paragraph selection, (3) diverse answer summary generation. We
implement it in the form of a search engine website.

To evaluate AnswerBot, we first build a repository includes a
large number of Java questions and their corresponding answers
from Stack Overflow. Then, we conduct a user study that eval-
uates the answer summary generated by AnswerBot and two
baselines (based on Google and Stack Overflow search engine) for
100 queries. The results show that the answer summaries generated
by AnswerBot are more relevant, useful, and diverse. Moreover,
we also substantially improved the efficiency of AnswerBot (from
309 to 8 seconds per query).

Demo tool website: http://answerbot.cn.
Demo video: https://youtu.be/EfHp_Cbeg2w.
Replication package: https://github.com/XBWer/AnswerBot.
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1 INTRODUCTION

Today, interacting with software question and answer (SQA) sites
have been an essential part of developers’ daily work for problem-
solving. Typically, when a developer encounters a technical prob-
lem, he or she formulates the problem as a query and feeds to a
search engine (e.g., Google) and obtain a list of possible relevant
posts that may contain the answers. Next, developer has to digest
the information included in the returned posts to identify possible
solutions. The whole solution-seeking experience can be painful
due to the massive amounts of information especially the rapid
growth of the SQA sites nowadays.

In our prior work, we surveyed 72 developers in two IT compa-
nies and we found that an answer summary extracted from other
answers is desired since manually generating answer summary is
not an easy task [13]. Specifically, there are three main challenges
as follows: 1) Information relevance, i.e., much low-quality and ir-
relevant information returned by search engines, 2) Information
redundancy, i.e., the same aspect may be mentioned in many answer
posts, 3) Information diversity, i.e., each answer in a post may not
be sufficient enough even it is the best answer.

To address the three challenges mentioned above, we first formu-
late the task as a query-focused multi-answer-posts summarization
task for a given technical question [13]. Then, we proposed an
approach AnswerBot with a three-stage framework: 1) relevant
question retrieval, 2) useful answer paragraph selection, 3) diverse
answer summary generation. To implement a practical tool, we
substantially improve the efficiency of each stage (on average from
309 to 8 seconds per query, i.e. 301 seconds faster) in three ways,
(1) create index for specific attributes in the database to improve
the speed of information retrieval. (2) reduce the redundant data
loading process, i.e., put the frequently used data (e.g., the word em-
bedding model used in two stages) into cache. (3) preprocessing the
questions and answers in the repository (e.g., stop words removal,
stemming) rather than process them on-the-fly. (4) replace multiple
loops structure for relevance calculation with matrix computation.

A key benefit of our tool is that developers only need to formulate
queries for their problems and then our tool offers an end-to-end
service, i.e., directly returns an answer summary in a few seconds.
Moreover, our tool offers the corresponding Stack Overflow URL

http://answerbot.cn
https://youtu.be/EfHp_Cbeg2w
https://github.com/XBWer/AnswerBot
https://doi.org/10.1145/3338906.3341186
https://doi.org/10.1145/3338906.3341186
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Figure 1: Framework of AnswerBot

of each related answer, hence developers can take a more in-depth
look if needed.

2 APPROACH

Figure 1 provides an overview of AnswerBot which generates
an answer summary for a given technical problem. AnswerBot
consists of three main stages as follow, and we elaborate them in the
following sections, 1) Relevant question retrieval. Given a technical
problem formulated as a query, this stage returns a ranked list of
relevant questions, 2) Useful answer paragraphs selection. Based on
the ranked list of relevant questions, all the answer paragraphs
in the answers to these questions are collected. This stage ranks
answer paragraphs based on three kinds of features to select rele-
vant and salient answer paragraphs for summarization, 3) Diverse
answer summary generation. Based on the list of candidate answer
paragraphs, this stage applies a text summarization algorithm to
generate the answer summary.

2.1 Relevant Question Retrieval

To identify relevant questions for a given query, we first utilize
bag-of-words representation to represent the query and the ques-
tion. We design our approach from two perspectives of capabilities,
(1) perceive the importance of words in the software domain, (2)
measure the semantic relatedness between two different words. To
achieve (1), we introduce a statistical metric named inverse docu-
ment frequency (IDF) [11] as it tends to filter out common terms
(such as “hello”, “great”). To achieve (2), we leverage word embed-
ding technique [9] since many works (e.g., [14, 15]) have shown its
advantages for measuring text relevance in the presence of lexical
gap.

The common step of building an IDF vocabulary and word em-
bedding model is to construct a domain-specific corpus. Specifically,
we extract title and description of Java questions (i.e., tagged as
java) from Stack Overflow to build the corpus. We use Gensim (a
Python implementation of the word2vec model [10]) to train the
word embedding model based on the corpus.

To build the IDF vocabulary, we further remove the stop words
from the corpus based on the list of stop words for text [3].We use a
popular stemming tool [7] to reduce each word to its root form for
it’s typically easier to implement and run faster than lemmatization.
Then, we compute the IDF value of each word in the corpus.

Moreover, we propose an algorithm to calculate the relevance
between the given query and the question, denoted as Wq and
WQ respectively. The asymmetric correlation rel(Wq → WQ ) is
calculated as below.

rel(Wq →WQ ) =

∑
wq ∈Wq rel(wq ,WQ ) ∗ id f (wq )∑

wq ∈Wq id f (wq )

where id f (wq ) is the IDF metric of the word wq , rel(wq ,WQ ) is
maxwQ ∈WQ rel(wq ,wQ ), and rel(wq ,wQ ) is the cosine similarity
of the two word embeddings wq and wQ . And the asymmetric
relevance rel(WQ →Wq ) is computed in the same way. Then, the
symmetric relevance between the query q and the question Q is
the average of the two asymmetric relevance betweenWq andWQ
as below. In this way, we can get a list of retrieved top-k similar
questions and apply them to the next stage of input.

rel(q,Q) = (rel(Wq →WQ ) + rel(WQ →Wq ))/2

2.2 Useful Answer Paragraphs Selection

To make the sentences logically fluent, we use the granularity of
the answer paragraphs and select the relevant prominent answer
paragraphs to summarize. We propose three types of functions to
determine whether the answer paragraphs can be used for summa-
rization: query related functions, paragraph content functions, and
user-oriented functions.
Query related featuresmeasure the relevance between an answer
paragraph and the query.

• Relevance to query. We set the relevance between a query and
an answer paragraph as the relevance between the query and
the question from which the answer paragraph is extracted.

• Entity overlap. We identify entity mentions in a query or an
answer paragraph by matching words by Stack Overflow
tags [2]. Let Eq and Eap be the set of entities mentioned
in the query and the answer paragraph, respectively. The
entity overlap between the query and the answer paragraph
is computed as

��Eq ⋂Eap
�� /��Eq �� (��Eq �� , 0). If the query does

not mention any entities (
��Eq �� = 0), we set entity overlap at

0.

Paragraph content features measure the salience of an answer
paragraph’s content.

• Information entropy. A word with higher IDFmetric indicates
that the word is less common in the corpus and the answer
paragraphs may be more useful. Thus, we sum the IDF met-
rics of words in a paragraph to represent the paragraph’s
entropy.

• Semantic patterns. We summarize 12 sentence patterns (see
Figure 2) based on our empirical observations of 300 ran-
domly selected best answers on Stack Overflow. If an answer
paragraph contains at least one of the sentence patterns, we
set the paragraph’s semantic pattern value at 1, otherwise 0.

• Format patterns. At last,We observe that HTML tags are often
used to emphasize salient information in the discussions. If
an answer paragraph contains HTML tags such as ⟨stronд⟩
and ⟨strike⟩, we set its format pattern score at 1, otherwise
0.
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Figure 2: Semantic Patterns For Salient Information

User oriented features select summary and high-quality answer
paragraphs based on user behavior patterns.

• Paragraph position. We observed that when authors write
answer posts, they usually start with some summary infor-
mation and then go into detail. Thus, we set the summary
value of the paragraph to be inversely proportional to the
position of the paragraph in the post of the firstm paragraph,
i.e., summary = 1/pos (1 ≤ pos ≤ m) (m = 3 in our current
implementation). The summary values of the subsequent
(exceeding themth ) paragraphs are set at 0.

• Vote on answer. Answers with higher vote indicate that the
community believes that they contain high-quality infor-
mation to answer the corresponding question, so we set an
answer paragraph’s vote as the vote on the answer post from
which the paragraph is extracted.

Based on the above seven features, AnswerBot computes an
overall score for each answer paragraph by multiplying the nor-
malized value of each feature. Based on the above seven features,
AnswerBot computes an overall score for each answer paragraph
by multiplying all the feature scores which are normalized to (0,1].
Answer paragraphs are ranked by their overall scores and the top-
10 ranked answer paragraphs are selected as candidate answer
paragraphs for summarization.

2.3 Diverse Answer Summary Generation

Given a list of candidate answer paragraphs, maximal marginal
relevance (MMR) algorithm is used to select a subset of answer
paragraphs to maximize novelty and diversity between the selected
answer paragraphs [8]. MMR first builds a similarity matrix be-
tween each pair of candidate answer paragraphs. The similarity
is computed as the symmetric relevance between the two answer
paragraphs as described in the Relevant Question Retrieval section.
It then iteratively selects 5 candidate answer paragraphs with max-
imal marginal relevance. The selected answer paragraphs form an
answer summary to the user’s technical question.

3 IMPLEMENTATION

3.1 Data Collection

The data source of AnswerBot is from Stack Overflow data dump
ofMarch 2016 [1]. In this way, we collect all Java questions (i.e., ques-
tions tagged with Java) and their corresponding answers. These
questions have at least one answer. Moreover, to ensure the qual-
ity of the question repository, we require that at least one of the
answers of the selected questions is the accepted answer or has
vote > 0. At the end, we obtain a repository with 228,817 Java

Figure 3: Homepage of AnswerBot

questions and collect their corresponding answers. We construct
the text corpus (described in Section 2.1) by using the title and body
of these Java questions and then build the word embedding model
and the word IDF vocabulary.

3.2 Tool Implementation

We implement AnswerBot in the form of a search engine website
based on Browser/Server architecture. Figure 3 shows the home-
page of AnswerBot. When the user enters a technical question as
a query, AnswerBot processes it in the background and displays a
bar to show the progress of the process. Once the whole process
is finished, the answer summary would be showed at the bottom
of the page. In details, we use Flask [4], a lightweight web frame-
work, to develop our web application AnswerBot. Then we use
uWSGI [5] as a web application server to host, monitor, and man-
age applications, and apply Nginx [6] as a reverse proxy server to
handle high concurrent short connection requests, HTTP caching
and provide request forwarding service.

Besides, to meet the efficiency requirement as an online search
engine, we optimize the code basis of the previous work [13] in five
different ways. First, a common optimization is building the index
for the attributes in database. Specifically, we utilize MySQL as our
database and create index for the attribute ID of each question and
the attributes PostTypeId and ParentId of each answer to speed
up the database search process. Second, considering that some data
(such as word embedding model) is used in multiple stages, we put
it in the memory cache instead of hard disk. Third, before users
feed their queries, we preprocess the questions and answers in
the repository by removing the stop words and stemming each
included word. Moreover, we represent each question and answer
as a matrix based on the trained word embedding model. When a
new query is fed to AnswerBot, it firstly represents the query into
a matrix based on the word embedding model. Then, it leverages
matrix computation technique for relevance calculation instead of
using multiple loops. In the end, we reduce the average query time
from 304 to 8 seconds per query on average.
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4 EVALUATION

4.1 User Study

To conduct our user study, we invite 2 postdoctoral fellows and
6 PhD students whose years of working experience on Java are
at least 2 years. We randomly select 100 questions (which cover a
diversity of aspects of Java programming) and use the titles of these
questions as queries. We ensure that our question repository does
not contain these 100 query questions and their duplicate questions.

Moreover, we present two baselines based on the Google (add
“site:stackoverflow.com” at the end of the query) and the Stack
Overflow search engine, respectively. We use the first ranked post
returned by search engine as the most relevant question and assume
that developers read the accepted answer or the answer with the
highest vote if there is no accepted answer of the relevant question.
We refer to the collected best or highest-vote answer of the two
baseline approaches as their corresponding answer summaries.

For a fair comparison, we provide the answer summaries gen-
erated by Baseline_Google, Baseline_SO and AnswerBot and the
participants do not know which answer summary is generated by
which approach. Then, they are asked to score the three answer
summaries from three aspects, i.e., relevance, usefulness, and diver-
sity. The score is a 5 point likert scale, with 1 being “Highly Irrele-
vant/Useless/Identical” and 5 being “Highly Relevant/Useful/Diverse”.

Table 1: Mean of Relevance, Usefulness and Diversity of Our

Approach and the Baseline Approaches

Relevance Usefulness Diversity
Our Approach 3.450 3.720 3.830

Baseline_Google 3.440 3.480* 2.930***
Baseline_SO 2.576*** 2.712*** 2.305***

***p<0.001, **p<0.01, *p<0.05

Table 1 shows the mean of relevance, usefulness and diversity
scores of AnswerBot and the two baselines. The result shows that
AnswerBot achieves the best performance in all three aspects,
while the Baseline_SO achieves the worst performance. Although
AnswerBot and Baseline_Google have comparable relevance score,
AnswerBot has a higher score in terms of usefulness and diversity,
especially diversity.

Moreover, we utilize the Wilcoxon signed-rank test [12] to evalu-
ate whether the differences between AnswerBot and the baselines
are statistically significant. The improvement of AnswerBot over
the Baseline_SO is statistically significant on all three aspects at the
confidence level of 99.9% while the improvement of AnswerBot
over the Baseline_Google on usefulness and diversity is statistically
significant at the confidence level of 95%. Considering the capabil-
ity of Google, it is not surprising the difference in relevance is not
statistically significant. However, AnswerBot achieves statistically
significant better performance in terms of usefulness and diversity.

4.2 Qualitative Analysis

Table 2 shows the answer summary generated for the question Dif-
ference between wait() and sleep(). The first paragraph provides the
most useful answer that wait() releases the lock but sleep() does not
while the other paragraphs describe other aspects of the differences.
The second paragraph provides a useful URL that redirects a page

Table 2: Answer Summary for Difference between wait() and
sleep()

No. Answer Paragraphs
1 The major difference is that wait() releases the lock or mon-

itor while sleep() doesn’t releases any lock or monitor while
waiting. wait is used for inter-thread communication while sleep
is used to introduce pause on execution, generally.

2 I found this link helpful (which references this post). it puts the
difference between sleep(), wait(), and yield() in human terms.

3 Yet another point is that you can get spuriouswakeups from

wait (i.e. the thread which is waiting resumes for no apparent
reason).

4 A wait can be "woken up" by another thread calling notify

on the monitor which is being waited on whereas a sleep

cannot. also a wait (and notify) must happen in a block synchro-
nized on the monitor object whereas sleep does not.

5 In my opinion, the main difference between both mecha-

nisms is that sleep/interrupt is the most basic way of han-

dling threads, whereas wait/notify is an abstraction aimed to do
thread inter-communication easier.

summarizes the differences. In this case, AnswerBot provides the
original URL of the answer to help users easily find the link. It
indicates that the answer summary generated by AnswerBot take
both relevance, usefulness, and diversity into consideration.

We also observed that developers could avoid some potential
pitfalls when using AnswerBot. For example, the accepted answer
for the query Remove trailing zeros from double is If you are willing
to switch to BiдDecimal , there is a stripTrailinдZeroes() method
that accomplishes this.. However, this solution would transform a
number like 1000.0 into a scientific notation, which cause some
potential bugs when directly printing the result. We found that
the answer summary generated by AnswerBot provides more
solutions, e.g., the first paragraph of the answer summary You
can use string manipulation to remove trailing zeros provides an
additional useful warning that calls BiдDecimal .toPlainStrinд after
stripping the trailing zeros.

5 CONCLUSION

We propose a tool AnswerBot with a three-stage framework for
automated generation of answer summary. Our user studies demon-
strate the relevance, usefulness, and diversity of the answer sum-
maries generated by AnswerBot. The results indicate that An-
swerBot can potentially help software developers improve their
efficiency for problem-solving. In the future, we would like to en-
hance AnswerBot to support more programming languages (e.g.
C/C++, Python) and provide more customized search options. More-
over, we are interested in integratingAnswerBot into an intelligent
Q&A system to help developers solve their problems efficiently.
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