
CCBERT: Self-Supervised Code Change
Representation Learning

Xin Zhou†, Bowen Xu*†‡, DongGyun Han§, Zhou Yang†, Junda He†, David Lo†
†Singapore Management University, Singapore

{xinzhou.2020, bowenxu.2017}@phdcs.smu.edu.sg, {zyang,jundahe,davidlo}@smu.edu.sg
‡North Carolina State University, USA

bxu22@ncsu.edu
§Royal Holloway, University of London, UK

donggyun.han@rhul.ac.uk

Abstract—Numerous code changes are made by developers in
their daily work, and a superior representation of code changes is
desired for effective code change analysis. Recently, Hoang et al.
proposed CC2Vec, a neural network-based approach that learns
a distributed representation of code changes to capture the se-
mantic intent of the changes. Despite demonstrated effectiveness
in multiple tasks, CC2Vec has several limitations: 1) it considers
only coarse-grained information about code changes, and 2) it
relies on log messages rather than the self-contained content of
the code changes. In this work, we propose CCBERT (Code
Change BERT), a new Transformer-based pre-trained model
that learns a generic representation of code changes based on
a large-scale dataset containing massive unlabeled code changes.
CCBERT is pre-trained on four proposed self-supervised objec-
tives that are specialized for learning code change representations
based on the contents of code changes. CCBERT perceives
fine-grained code changes at the token level by learning from
the old and new versions of the content, along with the edit
actions. Our experiments demonstrate that CCBERT significantly
outperforms CC2Vec or the state-of-the-art approaches of the
downstream tasks by 7.7%–14.0% in terms of different metrics
and tasks. CCBERT consistently outperforms large pre-trained
code models, such as CodeBERT, while requiring 6–10× less
training time, 5–30× less inference time, and 7.9× less GPU
memory.

I. INTRODUCTION

Software evolves rapidly with the continuous code changes

contributed by developers. A strong understanding of code

changes, therefore, is vital for the daily development process

and maintenance tasks. However, it is also non-trivial since

code changes are usually mixed to serve various purposes such

as bug fixing, refactoring, and adding new features. To help

developers handle numerous code changes efficiently, many

automated solutions have been proposed to address concrete

tasks (e.g., defect prediction [1], patch assessment [2], and

bug-fixing commit prediction [3]).

The initial step for these solutions is to extract a suitable

representation of code changes for further processing. Intu-

itively, following the “garbage in, garbage out” principle [4],

the quality of a code change representation plays a major

role in determining the eventual outcomes. Such tasks demand

a suitable input that boosts the performance of downstream

*Corresponding author. Email: bxu22@ncsu.edu

tasks and is computationally convenient to deal with, which

motivates our work in developing a superior representation of

code changes.

The closest work is by Hoang et al. [5], who proposed a

deep neural network model named CC2Vec to learn the dis-

tributed representation of code changes. However, we identi-

fied two limitations of CC2Vec that need to be addressed: 1) it

considers only coarse-grained information about code changes,

and 2) it relies on log messages to supervise the training, rather

than the self-contained content of the code changes. We further

discuss these issues in detail in Section II-A.

To mitigate the above limitations, we present CCBERT,

a Transformer-based pre-trained model for obtaining repre-

sentations for code changes. CCBERT enriches the input by

considering the edit action of each token which is responsible

for modifications made to a source code file. We consider

four standard types of edit actions, which are insert, delete,

replace, and equal. The changed and unchanged tokens in the

changed code lines can be distinguished by considering the

edit action. Besides, to enable training CCBERT on the self-

contained content of the code changes, we designed four novel

self-supervised pre-training tasks which are Masked Token
Unit Prediction, Masked New Token Prediction, Masked Old
Token Prediction, and Masked Edit Action Prediction. These

pre-training tasks are specialized for learning code change

representations in a self-supervised way, at the same time

bringing the fine-grained edit actions into account.

We evaluate the effectiveness of CCBERT on three down-

stream tasks, which are just-in-time defect prediction [1],

patch correctness prediction [2], and bug-fixing commit pre-

diction [3]. Results show that fine-tuned CCBERT achieves

state-of-the-art performance on all three tasks. Specifically,

CCBERT significantly outperforms CC2Vec or the state-of-

the-art approaches of the downstream tasks by 7.7%–14.0% in

terms of different metrics. To further explore the advantages

of CCBERT compared to larger pre-trained code models, we

thoroughly compared CCBERT with other larger pre-trained

code models (CodeBERT [6] and GraphCodeBERT [7]) in

terms of training time, inference time, model size, GPU mem-

ory needed, and performance gain. Our experimental results

showed that CBERT has consistently outperformed the other

182

2023 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSME58846.2023.00028

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(I

C
SM

E)
 |

97
9-

8-
35

03
-2

78
3-

0/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SM
E5

88
46

.2
02

3.
00

02
8

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

info debug
replace

Fig. 1. An example of the difference between the input of CC2Vec and
CCBERT. The dashed red (solid black) box is the range of code change data
that CC2Vec (CCBERT) considers. CCBERT also emphasizes on the edit
action (i.e. replace) and the changed tokens (i.e. info and debug) in the
representation learning which are not considered by CC2Vec.

larger pre-trained code models with 6–10 times less training

time, 5–30 times less inference time, 3.3 times smaller model

size, and 7.9 times less GPU memory needed.

The main contributions of this work are as follows:

• We present a Transformer-based self-supervised represen-

tation model CCBERT for code change representation that

perceives fine-grained code changes at the token level.

• We propose a novel initial representation for each token

from raw code changes that considers not only the corre-

sponding pair of old and new versions of the token but also

the edit action. Besides, we propose a set of novel self-

supervised tasks to pre-train CCBERT.

• In our evaluation, CCBERT consistently outperforms

CC2Vec and other pre-trained code representation models

for three code change-based tasks.

II. BACKGROUND

A. Model for Code Change Representation Learning

CC2Vec [5] is a hierarchical attention network-based code

change representation model guided by log messages (i.e.,

commit messages). CC2Vec comprehends the structural infor-

mation of a code change and identifies important aspects of

the code change with respect to the log message of the code

change. Although CC2Vec supports code change representa-

tion, we identified the following limitations of CC2Vec need

to be addressed:

• Coarse-grained information. For a given code change,

CC2Vec extracts the changed lines (code in the dashed red

box in Figure 1) from the code changes. Then it sequentially

parses the changed code lines into a sequence of tokens

without considering fine-grained edit information. Consider

the code change shown in Figure 1 as an example: there is

only one token changed between the removed and the added

code lines, i.e., replace the method logger.info with

logger.debug. And the corresponding edit action of the

only changed token is replace. In CCBERT, we address

this issue by considering the fine-grained edit actions on

code tokens as input. With the information on edit actions,

the intention behind the code change becomes more evident.

• Not trained on the code changes but on log messages.
CC2Vec relies on log messages to supervise its training

process. However, many works have demonstrated that log

messages are usually poorly written due to the lack of

experience and direct motivation, time pressure, and the

complexity of code changes [8], [9], [10]. Developers often

neglect to even write commit messages at all [11], [12].

This may impact the quality of the representation learned by

CC2Vec. In CCBERT, we mitigate the heavy dependency on

log messages by trying to fully leverage the self-contained

content of code changes as supervision signals.

B. Model for Code Representation Learning

CodeBERT [6] is a bimodal pre-trained model for both

programming language (PL) and natural language (NL). Code-

BERT is pre-trained on a large-scale dataset, CodeSearch-

Net [13]. CodeBERT considers two pre-training objectives

proposed in natural language processing: masked language

modeling (MLM) and replaced token detection (RTD). MLM

randomly masks 15% of tokens in the input and the goal is

to predict the masked tokens. RTD randomly replaces tokens

in the input and trains a model to identify the replaced

tokens. GraphCodeBERT [7] is an extension of CodeBERT

that additionally brings the inherent structure of code into

consideration. Apart from utilizing the traditional MLM task

at the pre-training stage, GraphCodeBERT introduces two

structure-aware pre-training tasks: edge prediction and node

alignment. Our work is different from those pre-trained models

for code snippets since CCBERT is specifically designed for

understanding code changes.

III. THE PROPOSED APPROACH

Figure 2 illustrates the overall framework of CCBERT that

takes code changes as input and outputs their corresponding

distributed representations. More specifically, CCBERT con-

sists of four parts:

• Pre-processing. (Section III-A). This part extracts three

pieces of fine-grained information (i.e., the old version of

code tokens, the new version of code tokens, and the edit

actions) from each of the code change and represents each

piece as a sequence of tokens. In other words, CCBERT con-

siders not only code change itself but also the corresponding

context (i.e., the surrounding unchanged code lines) with

fine-grained information (i.e., edit actions) as its input.

• Input Layer. (Section III-B). This part first encodes the

three pre-processed sequences of tokens as well as positional

information into a distributed representation format, 2D

matrices. And then it aggregates the embeddings of four

pieces of fine-grained information to form the input to the

neural networks in the feature extraction layers.

• Feature Extraction Layers. (Section III-C). This part ex-

tracts the feature vector of each token unit which corre-

sponds to the old and new versions of the code tokens, edit

action, and position by a standard Transformer-based model.

• Pre-training Objectives. (Section III-D). This part predicts

the labels generated by four proposed pre-training objec-

183

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

A Code Change Hunk

Pre-processing

Input Layer

Feature
extraction
layers

Pre-training
Objectives

Transformer Encoder Layers

… …

Old
Token

… …

… …

Code Tokens

Input Repre.

Hidden States

Masked Token
Unit Prediction

Masked New
Token Prediction

Masked Old
Token Prediction

Masked Edit
Action Prediction

Code Token
Embed.

Edit Action
Embed.

Position
Embed.Embedding

New
Token

Edit
Action Position

Fig. 2. Overall Framework of CCBERT

tives. It enables CCBERT to learn the representation of code

changes in a self-supervised manner. The novel objectives
are carefully designed to learn the fine-grained information
of code changes from various perspectives.

A. Pre-processing

To enable CCBERT to perceive fine-grained information

as well as the context of code changes, the first step is

to pre-process the corresponding raw data. Hence, in the

pre-processing step, we collect both code changes and their

corresponding context (i.e., the surrounding unchanged code

lines) and then extract the fine-grained information from them.

In the rest of this section, we introduce the details of how to

perform pre-processing gradually as well as extract the edit

actions from given code changes particularly.

A commit includes changes made to at least one or multiple

files. Each changed file contains sets of removed and/or added

lines in the commit. The changes in a file can be grouped

into change hunks. In addition to changed lines, a hunk also

contains the surrounding unchanged lines to provide context

for changes. In CCBERT, we follow the default setting of the

widely used “git-diff” 1 command to choose three lines of

unchanged code before and after the changed lines as context.
If the distance between any two changed parts is farther than

3 lines, these two changed parts will be split into two hunks.

A commit containing multiple code change hunks can serve

tangled purposes [14] while a single change hunk contains a

clearer and simpler intention that is easier for the model to

capture. Therefore, we consider each code change hunk as

a data instance fed into CCBERT. In other words, CCBERT

processes code changes at the hunk level.

We process the change hunks by the following steps:

1) Split code change hunk into two versions of code snippets:

the version before the code change (i.e., the old version)

and the version after the code change has been applied (i.e.,

the new version).

2) Tokenize the two versions of code snippets into two code

token sequences. We leverage the well-known Byte-Pair

1https://git-scm.com/docs/git-diff

this . add Things (Things);

this . remove Things (Things);

equal equal replace equal equal equal equal

Old Token Seq.

New Token Seq.

Edit Action Seq.

Input Unit

this.addThings(NewThings);

this.removeThings(Things);

Tokenization

Old Version Code

New Version Code

Construct Edit Action Seq.

New

Insert

<NULL>

Fig. 3. Example of generating the edit action sequence.

Encoding (BPE) tokenizer [15], which builds the vocabu-

lary by iteratively adding the most frequent combinations

of characters and outputs a sequence of token sequences.

For a fair comparison, we reuse the same vocabulary and

tokenizer 2 of CodeBERT [6] in CCBERT.

3) To better capture the fine-grained changes between two

versions of code snippets, we align two code token se-

quences and generate the edit sequence by using difflib 3,

a module in Python standard library. Figure 3 shows an

example to generate an edit sequence.

To generate the edit sequences, difflib finds the longest

contiguous matching sub-sequence and computes the edit

sequence based on the difference between the longest match-

ing subsequence and each of the two sequences. We define

four different edit actions: equal, delete, insert, and

replace. The equal action indicates tokens in two versions

at the same position are the same. The insert and delete
actions mean that a new token is added and that an existing

token is removed, respectively. The replace action denotes

that an old token is replaced with a new one. Specifically,

for insert and delete actions, we define a special token

“<NULL>” to represent an empty token position. For a position

that needed an insert action, the old version token is

“<NULL>” and the new version token is the token inserted.

Reversely, for the delete action, the old version token is the

token that is deleted, and the new version token is “<NULL>”.

Figure 3 illustrates an example of the generated edit sequence,

indicating that the exact fine-grained changes are: replacing the

code token “remove” with “add” and inserting “New” before

“Things”. The edit sequence can highlight the fine-grained

code changes at the token level for CCBERT to learn.

At the end of the pre-processing steps, a code change hunk

is converted into three sequences corresponding to the old

version code tokens, the new version code tokens, and the edit

actions. To clarify, we define an input unit (also called token
unit) by combining the old and new versions of the code token

as well as the corresponding edit action at the same position.

2https://huggingface.co/microsoft/codebert-base
3https://docs.python.org/3/library/difflib.html

184

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

B. Input Layer

CCBERT utilizes the edit action sequences to capture the

fine-grained code changes. Thus, in the Input Layer, we need

to vectorize not only the code tokens but also the edit actions.

To better aggregate diverse information extracted from code

changes in the pre-processing, we build input representations

that fuse the embeddings of old&new versions of code tokens,

edit actions, and the positions of tokens. The input layer

mainly performs the following steps:

Vectorize Tokens (Edits). We represent each code token or

edit action in the pre-processed sequences as a vector of d
dimensions. By default, we set d to be 512. We randomly

initialize two matrices for code tokens and edit actions: the

code token matrix C ∈ RVcode×d and the edit action matrix

E ∈ RVedit×d, where Vcode is the number of unique code

tokens in the vocabulary and Vedit is the number of unique

edit actions. Specifically, Ci ∈ Rd is the embedding of i-th
code token in the vocabulary. The code token matrix and the

edit action matrix will be updated during the training process

via the back-propagation mechanism [16].

Given three pre-processed sequences of length L, we encode

the sequences into three matrices representations by retrieving

the corresponding embeddings from C and E. We denote the

old code, new code, and the edit actions in a code change

hunk as XL
old ∈ RL×d, XL

new ∈ RL×d, and XL
edit ∈ RL×d,

where d is the dimension of the token (edit) representation.

Vectorize Position Information. As CCBERT is built upon

BERT [17], it follows the default BERT position embeddings

to capture the positional information in the sequence. We

denote the positional embedding as XL
P ∈ RL×d when the

length of a sequence is L.

Build Input representation. After getting the embeddings

of code tokens (new or old), edit actions, and positions, the

input representation is computed by element-wise summing

the embeddings of corresponding old tokens, new tokens, edit

actions, and positions: XL = XL
old + XL

new + XL
edit + XL

P .

Hereafter, we refer to XL as X for simplicity. Besides, a

token (input) unit is defined as the combination of the old,

new version code token, and the corresponding edit action at

the same position. Thus, the representation of the i-th token

unit is Xi ∈ Rd which is the element-wise sum of the old

and new code token embedding, the edit action embedding,

and the positional embedding at the i-th position. CCBERT

employs this element-wise addition of vectors to achieve a

shorter input length and reduce computation costs. CCBERT

leverages a Transformer encoder, where the maximum input

length is a crucial factor affecting the model size and GPU

resources required for training. The attention matrix compu-

tations in the Transformer scale quadratically with the input

sequence length [18]. Element-wise addition has the advantage

of keeping the input lengths shorter. For example, if each of the

three vectors XL
old, XL

new, and XL
edit consists of 400 tokens,

the final input length remains at 400 tokens using the element-

wise addition. On the other hand, if the edit tokens were

concatenated separately to the code token sequence, the input

Fig. 4. An abstracted example of code change data

length would double to 800 tokens, resulting in significantly

higher computation costs.

C. Feature Extraction Layers

CCBERT utilizes the Transformer encoder [19] model to

extract the features from code changes. The Transformer

encoder [19] with its self-attention mechanism can update the

representation of each token unit (i.e., Xi) by aggregating

information from other token units (containing information of

code tokens and edit actions at other positions). In this way,

the representation of each token unit carries not only its own

information but also the overall information of the whole code

changes.

A Transformer encoder model usually consists of N iden-

tical Transformer encoder layers. The input of the next trans-

former encoder layer is the output of the last transformer

encoder layer. We use the equations below to illustrate it:

Xk+1 = TransformerEncoderLayerk(Xk) where Xk is

the input matrix for the k-th transformer encoder layer. The

input vector X (the code change hunk vectorized by the input

layer) is fed into the first transformer encoder layer (X = X1).

The number of transformer encoder layers (i.e., N) signif-

icantly affects the model size, training time, and computing

resources required for pre-trained models [17]. Although more

layers of transformer encoder layers usually lead to better

performance, we choose the N as 4 considering the efficiency

of our representation model and the limited computation

resources (i.e., GPU memory) available in our group.

D. Pre-training Objectives

Motivation. Although there is a large scale of code change

available in open-source software, it is usually unlabeled which

means the properties of a code change related to downstream

tasks are unknown. For instance, we may not be able to be

aware of whether a code change introduces a defect or not.

To learn the semantic meanings of unlabeled data, a typical
idea is first to mask some parts of unlabeled data and then
ask the DL models to reconstruct the masked parts. If a model

can accurately reconstruct the masked parts of input data, it

indicates that the model captures some core features of this

kind of input data [17]. To learn an effective code change

representation model on a large unlabelled code change data,

one core question is: what parts of code change data can we
mask? As introduced in Section III-A, code change data can be

pre-processed into three sequences of tokens: the old version

code tokens, the new version code tokens, and the edit actions.

185

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

this . add Things (Things);

this . remove Things (Things);

equal equal replace equal equal equal equal

Old Token Seq.

New Token Seq.

Edit Action Seq.

New

Insert

<NULL>

MASK . add Things MASK Things);

MASK . MASK MASK (Things);

MASK equal replace equal equal MASK MASK

Old Token Seq.

New Token Seq.

Edit Action Seq.

MASK

Insert

<NULL>

Transformer Encoder Layers

thisthis equal

MASKMASK MASK MASK MASK

Thingsremove

MASK

(

MASK

New

MASK MASK

equal equal

Masked Unit Prediction
Masked Old Token

Prediction

Masked New Token

Prediction

Masked Edit Action

Prediction

Original Code Change:

Masked Code Change:

Reconstruct Masked Code/Edit:

Fig. 5. Pre-training Objectives Examples. The dashed blue box indicates the
masking of Masked Unit Prediction (MUP) and the Transformer encoder will
reconstruct the parts that are masked in MUP. Similarly, the dashed orange,
green, and purple boxes stand for Masked Old Token Prediction, Masked New
Token Prediction, and Masked Edit Action Prediction Respectively.

Our pre-training objectives aim to fully use the three kinds of

information.

Figure 4 presents an abstracted example. It presents the old

version code tokens (the first column), the new version code

tokens (the second column), and the edit actions (the third

column). Specifically, in Figure 4, oi, ni, and ei stand for

the token at the i-th positions in three sequences. To fully

make use of all components to help CCBERT to perceive the

semantics of code changes, we can hide/mask the following

complementary parts of code changes:

• Hide All at Certain Positions: randomly mask all tokens (two

versions of code tokens and edit actions) at certain positions

(e.g., masking < oi, ni, ei >);

• Hide New: mask the version of code after a code change

(i.e., masking a number of the ni);

• Hide Old: mask the version of code before a code change

(i.e., masking a number of the oi);
• Hide Edit: mask the edit actions in a code change (e.g.,

masking a number of the ei).

An overall example of four tasks is presented in Figure 5. We

will introduce more details about our pre-training objectives

in the following parts.

Masked Token Unit Prediction. This pre-training objective

is based on the “Hide All at Certain Positions” strategy. It

masks the token units 〈oi, ni, ei〉 that carry three pieces of

information, old code token, new code token, and edit action,

at the same time. Then it asks CCBERT to predict the masked

token units. As the code sequences (old and new) and the

edit sequences are aligned (as shown in Figure 3), we only

need to decide the positions we want to mask. Following

the previous work [17], [6], we randomly sample a standard

portion (i.e., 15%) of positions to mask. Once the masked

positions are determined, we replace the code tokens and

the edit actions at the masked positions with a special token

“<MASK>”. After masking a part of input data, CCBERT is

required to predict what code tokens/edit actions are masked

in inputs. We describe the loss of the Masked Token Unit

Prediction (MUP) task as:

LMUP = −
K∑

t=1

log{pθ(nq1(t)|nmasked, omasked, emasked)

×pθ(oq1(t)|nmasked, omasked, emasked)

×pθ(eq1(t)|nmasked, omasked, emasked)}
where K is the number of masked token units in this

data sample. nmasked, omasked, emasked are the token/edit

sequences of the masked new version of code, the masked

old version of code, and the masked edit actions respectively.

q1(t) is the real position of the t-th masked new token, old

token, and edit action in its corresponding sequences. q1 is a

list whose elements are randomly sampled 15% positions of

input sequences.

Masked New/Old Token Prediction. These two pre-training

objectives are based on the “Hide New” and “Hide Old”

strategies. We expect the model to imitate what human de-

velopers have done when developing software (i.e. editing the

old version of code into a new version), which motivates us to

propose the objective named Masked New Token Prediction.

The objective requires a model to predict the new version

code based on the given old version code. It is challenging

to achieve as the purposes of code changes could vary greatly.

Such properties introduce randomness that may hinder the

pre-training. To mitigate this issue, we not only feed the old

version of code tokens but also the corresponding edit actions.

Specifically, we randomly sample a portion (i.e., 15%) of the

new version of code tokens to mask.
To fully use all the information in a code change, we also

randomly mask 15% of the old version of tokens and retain

the new version of tokens unmasked. We call this pre-training

objective Masked Old Token Prediction which requires the DL

model to “roll back” the old version of code from the new

version of code and corresponding edit actions. We describe

the loss of the Masked New Token Prediction (MNP) task and

the Masked Old Token Prediction (MOP) task as:

LMNP = −
K∑

t=1

logpθ(nq2(t)|nmasked, o, e)

LMOP = −
K∑

t=1

logpθ(oq3(t)|n, omasked, e)

where K is the number of masked new(old) code tokens.

nmasked(omasked) is the masked new(old) code token se-

quence and ni (oi) is the masked new(old) version of code

token at the i-th position. q2(t) and q3(t) are the real positions

of the t-th masked new and old tokens in their corresponding

code token sequences respectively. q2 and q3 are two lists

whose elements are randomly sampled 15% positions of input

sequences. Please note that q1, q2, and q3 are all randomly

sampled with different random seeds.

Masked Edit Action Prediction. This pre-training objective

is based on the “Hide Edit” strategy. It is also critical for

186

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

the model to understand the real meaning of edit actions like

“insert”, “delete”, or “replace”. To enable CCBERT to perceive

the meaning of edit actions, we only mask edit actions in

a code change hunk without masking any new or old code

tokens. The objective is to predict the type of each masked

edit action by giving two versions of the code tokens. As this

pre-training objective is relatively simpler than the other three

objectives, we do not randomly mask 15% of edit actions.

Instead, we mask all the edit actions in a code change hunk and

require the model to predict each edit action on each pair of

old and new code tokens. We describe the loss of the Masked

Edit Action Prediction (MEP) task as:

LMEP = −
|emasked|∑

t=1

logpθ(et|n, o, emasked)

where emasked is the masked edit action sequence and

|emasked| is the length of the masked edit action sequence.

et is the masked edit action at the t-th position.

E. Parameter Learning

During the pre-training stage, CCBERT learns the following

parameters: the embedding matrices of code tokens (i.e., C)

and edit actions (i.e., E), the transformer encoder layers’

matrices, and the weights matrices and bias values of the

fully connected layers. Once the parameters are learned, the

representation of each code change hunk is determined. The

goal of the pre-training stage is to minimize the sum of the

losses of four pre-training objectives and the model parameters

are shared among all the objectives. The final loss function is

given below:

min
θ

LMUP (θ) + LMNP (θ) + LMOP (θ) + LMEP (θ)

where θ represents all parameters of CCBERT. LMUP ,

LMNP , LMOP , and LMEP refer to the losses of Masked To-

ken Unit Prediction, Masked New Token Prediction, Masked

Old Token Prediction, and Masked Edit Action Prediction

objectives.

IV. EXPERIMENTS

A. Task-Agnostic Experimental Details

1) Pre-training Data: We pre-train CCBERT on a large-

scale code change dataset recently collected by Monperrus

et al. [20], which includes 663k commits in Java projects

on Github. This dataset is built based on 101,472 unique

open-source GitHub repositories and filtered with a set of

constraints. For example, the dataset only included (1) com-

mits that contained changes in at least one Java source

file, and (2) commits that contained less than n (by default

n = 40) changed lines of code in a Java source file. Using

the preprocessing process described in Section III-A, we split

these commits into over 1.3M change hunks. Although we

only pre-trained on Java data which is one of the most

popular programming languages, our approach is generic and

language-agnostic and can be applied to any programming

language.

2) Pre-training Implementation: We implemented our

model using PyTorch [21]. In addition, we adopted the Trans-

former architecture from the UER library [22]. We trained

CCBERT on NVIDIA Tesla V100 GPU with 16 GB of

memory. The hyper-parameters to train models are as follows:

the batch size is 64 and the learning rate is 3e−4. AdamW [23]

was used to update the parameters and we set the number of

warm-up steps as 10K. We set the max input length as 256

due to the limitation of the computation resources4. We set

the max training step as 500K.

3) Fine-tuning Implementation: For each task, we simply

feed the task-specific inputs and outputs into CCBERT and

fine-tune all the parameters of CCBERT. Specifically, the

average representation in the last layer is fed into a linear

classifier to produce the prediction. A standard cross entropy

loss is leveraged and the parameters of CCBERT are updated

to minimize the cross entropy loss function. We evaluate the

performance of the model at the end of each epoch on the

validation set and select the best-performing model for testing.

B. Research Question

The goal of this work is to build a pre-trained representa-

tion model of code changes that can be applied to multiple

downstream tasks. We raise a main research question: How
does CCBERT perform in downstream tasks?

We evaluate the effectiveness of CCBERT on three dif-

ferent code change-based tasks, i.e., just-in-time defect pre-

diction [1], patch correctness prediction [2], and bug-fixing

commit prediction [3].

C. Task 1: Just-in-time Defect Prediction

1) Background: The task of just-in-time (JIT) defect pre-

diction refers to the identification of defective code change,

which can provide instant feedback to developers to minimize

their effort for inspection. JIT defect prediction tools have

been widely spread in large software companies [24], [25].

We model the task as a binary classification task, labeling a

commit as defective or not.

2) Baselines: We adopt CC2Vec [5], the state-of-the-art

code change representation model, as one baseline. Moreover,

we adopt two recent task-specific approaches designed for the

JIT defect prediction task: LApredict [26] and DeepJIT [1] as

baselines. LApredict leverages the number of added lines in a

commit as the input and builds a logistic regression model

as the classifier. DeepJIT [1] is a CNN-based model [27]

that automatically extracts features from the content of code

changes and uses FCs as the classifier.

3) Experimental Setting: As CCBERT was only pre-trained

on Java code changes provided in the dataset [20], we selected

Java as our target language for both training and evaluation.

For the datasets, we use the Java JIT defect prediction datasets

used in the LApredict paper [28]. We follow the same data

partitioning strategy used in the LAPredict work [28]. The

4To avoid the Out Of Memory (OOM) issue, we had to reduce the maximum
input length from 512 to a smaller value that was compatible with the device’s
capacity.

187

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON IN JIT DEFECT PREDICTION

Datasets Metric CC2Vec LApred. DeepJIT CCBERT

JDT PR 64.0 64.4 64.4 67.4
ROC 66.5 67.7 67.0 70.6

Platform PR 55.9 53.3 57.4 67.9
ROC 76.1 74.7 77.1 83.0

Gerrit PR 13.4 18.4 13.5 16.4
ROC 69.9 75.0 70.3 76.0

Average PR 44.4 45.3 45.1 50.6
ROC 70.8 72.5 71.5 76.5

first 80% of data in chronological order are the training set

and the later 20% of data are the testing set. We use the

same data split for training and evaluating all the models

investigated. We set aside 5% of data from training data as

the validation set. Therefore, the data split ratio is 75%, 5%,

and 20% for training, validation, and testing, respectively. We

keep the hyper-parameters the same as the original settings

reported in the corresponding papers for each baseline.

The datasets released in LApredict are imbalanced in

classes: the number of defective commits is smaller than

clean commits. Specifically, the ratios between the number

of defective commits and clean commits are about 1:10,

2:3, and 4:6 in Gerrit, Platform, and JDT respectively. We

follow prior work [1], [5], [28] to avoid using threshold-

dependent measures (e.g., accuracy or F1-scores) since these

measures strongly depend on arbitrary thresholds [29], [30].

We use Area Under Receiver Operator Characteristic Curves

(AUC-ROC) as the evaluation metric, which is a threshold-

independent measure and is commonly used in previous stud-

ies on JIT defect prediction [1], [5], [28]. AUC-ROC shows

how the number of correctly classified positive examples

varies with the number of misclassified negative examples.

However, ROC curves can present an overly optimistic view

of the performance of a model if there is a skew in the class

distribution [31]. To mitigate the problem, we also adopt Area

Under Receiver Precision-Recall Curves (AUC-PR) which is

more informative than AUC-ROC when evaluating binary

classifiers on imbalanced datasets [32], [33].

4) Results: Table I presents the experimental results for

the JIT defect prediction task. CCBERT achieves the best

performance for all projects except for the AUC-PR on the

Gerrit project. It outperforms DeepJIT (LApredict) by 7.0%

and 12.2% (5.5% and 11.7%) in terms of AUC-ROC and AUC-

PR respectively on average. In addition, CCBERT outperforms

CC2Vec by 8.1% and 14.0% in terms of AUC-ROC and AUC-

PR. To ensure the improvements are statistically significant,

we conducted the Wilcoxon Signed Rank Test [34] at a 95%

confidence level (i.e., p-value < 0.05) on the paired data

which corresponds to each of the baselines and CCBERT.

We confirmed that the difference between all baselines and

CCBERT is statistically significant.

D. Task 2: Patch Correctness Prediction

1) Background: The task of patch correctness prediction

aims to identify the correct patches generated by automated

TABLE II
COMPARISON IN PATCH CORRECTNESS PREDICTION

Methods Acc. F1 AUC
CC2Vec [5] 73.9 72.0 78.8
Tian et al. [2] 74.4 72.0 80.8
CACHE [37] 75.4 78.0 80.3
CCBERT 81.0 80.0 88.4

program repair (APR) approaches [2]. A typical way to assess

the correctness of a generated patch is to validate it by execut-

ing available test cases. However, this patch validation method

suffers from an overfitting problem [35], [36]: the generated

patches, although validated by passing all available test cases,

may actually be incorrect with respect to the intended program

specification. To mitigate the overfitting problem, recently,

Tian et al. [2] showed the potential of code representations to

predict the correctness of patches. Later, Building upon this

idea, Lin et al.[37] extended this research direction further. We

follow Tian et al. [2] and Lin et al. [37] to define the patch

correctness prediction task as a binary classification task: given

buggy and patched code, a model should predict whether the

patched code can correctly fix the bug or not.

2) Baselines: We adopt CC2Vec [5], the state-of-the-art

code change representation model, as one baseline. Moreover,

we adopt two recent task-specific approaches designed for this

task: Tian et al.’s [2] approach and CACHE [37]. Tian et al.

tried different representation models such as Doc2Vec [38]

and BERT [17] with different classifiers like Logistic Re-

gression (LR) and Decision Tree. For limited space, we only

report their best-performing combination (i.e., BERT+LR).

CACHE [37] is proposed by Lin et al. and showed state-

of-the-art performance in the patch correctness assessment

task. Specifically, CACHE learns a context-aware code change

embedding considering program structures.

3) Experimental Setting: For the datasets, we use the

dataset collected by Tian et al. [2]. The dataset contained 1,000

patches and was built based on labeled patches provided by

two independent teams: Liu et al. [39] and Xiong et al. [40].

We follow the same data partitioning used by Tian et al. [2],

i.e., 5-fold cross-validation. For evaluation metrics, as the

dataset released by Tian et al. [2] is balanced, we adopt both

threshold-independent metrics like AUC-ROC and threshold-

dependent metrics in this task. Similar to the previous stud-

ies [2], [41], we use the metrics that are suitable to evaluate

binary classification from diverse perspectives: accuracy, F1-

score, and AUC-ROC.

4) Results: The performance of the different approaches

is presented in Table II. CCBERT significantly outperforms

CC2Vec by 9.6%, 11.1%, and 12.2% in terms of accuracy, f1-

score, and AUC-ROC. CCBERT outperforms the Tian et al.’

approach (i.e., BERT+LR) by 8.9%, 11.1%, and 9.4% in terms

of accuracy, F1-score, and AUC-ROC. In addition, CCBERT

leads to 7.4%, 2.6%, and 10.1% improvements over CACHE

in terms of accuracy, F1-score, and AUC-ROC, respectively.

To ensure the improvements are statistically significant, we

188

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

TABLE III
COMPARISON IN BUG-FIXING COMMIT PREDICTION

Methods Acc. F1 AUC
CC2Vec [5] 89.3 89.3 95.3
LPU-SVM [43] 73.1 73.3 73.1
PatchNet [3] 85.4 85.2 93.3
CCBERT 91.6 91.8 96.8

carry out the Wilcoxon Signed Rank Test [34] at a 95%

confidence level (i.e., p-value < 0.05) on the paired data

which corresponds to each of the baselines and CCBERT. We

find that, in statistics, CCBERT significantly outperforms all

baselines in this task.

E. Task 3: Bug-fixing Commit Prediction

1) Background: The Linux kernel follows a two-tiered

release model: a mainline version that accepts bug fixes and

feature enhancements, is paralleled by a series of stable
versions, which accept only bug fixes [42]. Developers of

the Linux kernel regularly propagate bug-fixing patches in a

mainline version to the stable versions to ensure the quality

of stable versions. However, the maintainers of stable versions

may overlook relevant patches in the latest mainline version.

Thus, an automated method to identify bug-fixing patches

is needed. We treat the problem as a binary classification

problem, in which each patch is labeled as a bug-fixing patch

or not.
2) Baselines: We adopt CC2Vec [5], the state-of-the-art

code change representation model, as one baseline. Moreover,

we adopt two task-specific approaches, i.e., LPU-SVM [43]

and PatchNet [3]. LPU-SVM is proposed by Tian et al. [43].

It uses hand-crafted features as model input and combines

Learning from Positive and Unlabeled examples (LPU) [44]

with Support Vector Machine (SVM) [45] to build a patch

classification model. PatchNet [3] is he state-of-the-art task-

specific approach, which represents the patches as a three-

dimensional matrix and employs a 3D-CNN [46] to automat-

ically extract features from the matrix.
3) Experimental Setting: For the dataset, we use the dataset

of Linux kernel bug-fixing patches published by Hoang et

al. [3]. This dataset consists of 42K bug-fixing patches as well

as 40K non-bug-fixing patches collected from the Linux kernel

versions v3.0 to v4.12, released in July 2011 and July 2017

respectively. The dataset only considered patches that have less

than 100 lines of changed code by following the Linux kernel

stable patch guidelines. We used a 5-fold cross-validation for

the evaluation as Hoang et al. have done [3]. Following the

previous study [3], [5], we use the same metrics to evaluate

the bug-fixing commit prediction task (i.e., accuracy, F1-score,

AUC-ROC).
4) Results: We report the performance of the different

approaches in Table III. Overall, CCBERT shows the best

performance in this task. Specifically, CCBERT outperforms

the task-specific state-of-the-art approach, PatchNet by 7.3%,

7.7%, and 3.8% in terms of accuracy, F1-score, and AUC-

ROC. CCBERT also consistently outperforms CC2Vec by

TABLE IV
ABLATION STUDY ON PRE-TRAINING OBJECTIVES AND COMPARISON

WITH THE ORIGINAL MLM.

Ablation Task1
(ROC)

Task2
(F1)

Task3
(F1)

CCBERT 76.5 80.0 91.8
- Unit 75.1 77.9 91.8
- New 74.9 75.2 91.6
- Old 75.7 77.4 91.8
- Edit 74.7 77.0 91.6

Original MLM 72.9 72.3 90.7

2.6%, 2.8%, and 1.6% in terms of accuracy, F1-score,

and AUC-ROC. We conducted the Wilcoxon Signed Rank

Test [34] at a 95% confidence level (i.e., p-value < 0.05).

Results show that the improvements achieved by CCBERT

are statistically significant.

V. DISCUSSIONS

A. Qualitative Analysis

To investigate the quality of code change representation

learned by CCBERT, we utilize the T-SNE dimensionality

reduction technique [47] to visualize the vector space learned

by our approach and CC2Vec in the patch correctness pre-

diction task. As shown in Figure 6, the code change vectors

of CCBERT are more linear-distinguishable than CC2Vec

vectors, indicating that CCBERT contains much clearer patch

correctness information than CC2Vec. This may explain why

CCBERT can significantly outperform the prior state-of-the-

art, CC2Vec.

B. Ablation Study and Comparison with MLM

We demonstrated the superior performance of CCBERT

on three different downstream tasks, indicating that our pre-

training objectives benefit code change understanding. In this

discussion, we carry out an ablation study and understand

the contribution of each pre-training objective. We further

pre-train four model variants, each of which is trained with

one pre-training objective removed, and evaluate their per-

formance on all three downstream tasks. The model variant

CCBERT-Unit, CCBERT-New, CCBERT-Old, and CCBERT-

Edit represent CCBERT trained without the Masked Unit

(a) Vector space learned by
CC2Vec.

(b) Vector space learned by
CCBERT.

Fig. 6. Vector space visualization of CCBERT and CC2Vec in the patch
correctness prediction task.

189

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

Prediction, the Masked New Token Prediction, the Masked Old

Token Prediction, and the Masked Edit Prediction respectively.

Table IV shows the results of the ablation study. The drop in

the model performance shows the importance and contribution

of each pre-training task. The results confirm that all the pre-

training tasks help CCBERT to learn a better code change rep-

resentation. Among them, the Masked New Token Prediction

task is more important while the Masked Old Token Prediction

task and the Masked Unit Prediction task are less helpful.

In addition, we are interested in comparing the effectiveness

of our pre-training objectives with the well-known Masked

Language Modeling (MLM) objective used in CodeBERT [6]

and GraphCodBERT [7]. CodeBERT and GraphCodBERT

both employ a 12-layer Transformer encoder, which is three

times larger than CCBERT. Furthermore, CCBERT is pre-

trained on different pre-training data compared to CodeBERT

and GraphCodeBERT. Therefore, comparing CCBERT di-

rectly with CodeBERT (GraphCodeBERT) would not reveal

the advantages and drawbacks of our proposed pre-training

tasks compared to the original MLM.

To provide a fair comparison between our proposed pre-

training objectives and the MLM, we developed a code change

pre-trained model based on MLM (namely CCMLM) that uses

the same pre-training data as CCBERT. In this model, we

simply concatenate the old and new versions of the code and

use it as the input. We followed the default MLM pre-training

objective to randomly mask 15% of the tokens with the special

token “<MASK>” and predict the masked tokens. We utilized

the same pre-training data and settings as CCBERT for this

model. By comparing the performance of CCBERT with this

model, we can determine the effectiveness of our proposed

pre-training objectives. Table IV presents the performances of

CCMLM (i.e., the Original MLM row) compared to CCBERT.

Results show that CCBERT can lead to 4.9%, 10.7%, and 1.2%

improvements on three tasks, respectively. We also conducted

the Wilcoxon Signed Rank Test [34] at a 95% confidence level

(i.e., p-value < 0.05). Results show that the improvements

achieved by CCBERT are statistically significant. For instance,

the p-value between CCBERT and CCMLM on task 3 is about

3e-4.

C. Comparisons with Larger Pre-trained Code Models

In this subsection, our objective is to investigate the ef-

fectiveness of CCBERT in comparison to off-the-shelf pre-

trained code models that are commonly used for source

code understanding, such as CodeBERT and GraphCodeBERT.

Apart from effectiveness, we will also compare these models

from various perspectives, which include the model size and

time required for training/fine-tuning and testing 5. These

perspectives are essential to consider for practical purposes.

1) Effectiveness: Table V presents a comparison of the

effectiveness of CodeBERT, GraphCodeBERT, and CCBERT.

The results show that CCBERT consistently outperforms

5As the speed and size of CodeBERT and GraphCodeBERT are very
similar, due to limited space in the paper, we only include the comparison
with CodeBERT.

TABLE V
COMPARISON WITH POPULAR PRE-TRAINED CODE MODELS IN

EFFECTIVENESS

PTM Comparison Task1 Task2 Task3
Metrics PR ROC Acc. F1 Acc. F1
CodeBERT 47.9 73.5 78.8 77.0 90.0 90.4
GraphCodeBERT 47.5 72.8 77.1 74.5 90.5 90.8
CCBERT 50.6 76.5 81.0 80.0 91.6 91.8

TABLE VI
COMPARISON OF CCBERT AND OTHER PRE-TRAINED CODE MODELS IN

TERMS OF THE NUMBER OF TRANSFORMER ENCODER LAYERS,
TRAINABLE PARAMETERS, AND GPU RESOURCES NEEDED.

Models Layers Param. GPU
Resource

CodeBERT 12 125M x7.9
CCBERT 4 38M x1.0
CC2Vec 3 8M x0.6

CodeBERT and GraphCodeBERT across the three evalu-

ated tasks. Specifically, in JIT defect prediction (task 1),

CCBERT achieves 5.6% and 4.1% higher AUC-PR and AUC-

ROC scores than CodeBERT (6.5% and 5.1% higher than

GraphCodeBERT). In patch correctness prediction (task 2),

CCBERT leads to 2.8% and 3.9% (5.1% and 7.4%) im-

provements over CodeBERT (GraphCodeBERT) in terms of

accuracy and F1-scores. For bug-fixing commit prediction

(task 3), CCBERT achieves 1.8% and 1.5% (1.2% and 1.1%)

improvements over CodeBERT (GraphCodeBERT) in terms of

accuracy and F1-score. To confirm the statistical significance

of these improvements, we conducted the Wilcoxon Signed

Rank Test [34] at a 95% confidence level (i.e., p-value <
0.05). The test confirmed that the improvements achieved by

CCBERT are statistically significant.

CCBERT consistently outperforms two off-shelf pre-

trained models (i.e., CodeBERT and GraphCodeBERT)

on all code change-based tasks.

2) Model Size: The results presented in Table VI reveal that

CCBERT has a smaller model size compared to other pre-

trained models, with only 4 transformer encoder layers and

38M trainable parameters. In contrast, CodeBERT, which has

12 layers, is approximately three times larger than CCBERT,

with 125M trainable parameters. Larger model sizes generally

require more GPU resources for training and inference. In par-

ticular, under the same experimental conditions, CodeBERT

requires approximately 7.9 times more GPU resources6 than

CCBERT for both training and fine-tuning. These observations

underscore the efficiency of CCBERT in terms of memory and

computational resources.

We also compare CCBERT with CC2Vec to obtain a com-

prehensive understanding of CCBERT’s model size and GPU

requirements. Different from CCBERT and other pre-trained

6To measure the GPU resources needed when fine-tuning, we experiment
on a machine equipped with Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
and NVIDIA Tesla V100 GPU with 16 GB of memory.

190

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
THE TIME COST OF CCBERT, CC2VEC, AND CODEBERT IN BOTH

FINE-TUNING (TRAINING) AND EVALUATION (TESTING) FOR THREE

DOWNSTREAM TASKS.

Time Cost # of
Data

CodeBERT CC2Vec CCBERT
Train Test Train Test Train Test

Task1
JDT 4k 24m 23s 3m 0.2s 2m 0.4s
Plat. 11k 75m 69s 10m 1s 7m 2s
Gerrit 14k 90m 91s 12m 2s 9m 2s

Task 2 1k 11m 8s 5s 0.2s 2m 1s
Task 3 55k 11.8h 116s 27h 45s 2.1h 22s

code models, CC2Vec is not based on Transformers but on a

hierarchical attention network (mainly consisting of three lay-

ers of Gated Recurrent Units (GRUs) [48]) which contains less

trainable parameters. CC2Vec only has 8M parameters which

is much smaller than CCBERT and CodeBERT. In addition,

CC2Vec only demands 60% GPU resource of CCBERT which

indicates that CC2Vec is more lightweight than CCBERT.

However, CCBERT shows much better effectiveness: signif-

icantly outperforming CC2Vec in all studied tasks. Besides,

CCBERT has a comparable training/inference time cost with

CC2Vec (as shown in Section V-C3).

CCBERT is about 3× smaller than CodeBERT (Graph-

CodeBERT) in model size and requires about 7.9× less

GPU resources.

3) Time Cost: A slow speed will impair the practical us-

ability of the approach. We evaluate the efficiency performance

of CCBERT, CC2Vec, and CodeBERT in both training/fine-

tuning and testing in each task. Table VII shows the results.

Overall, CCBERT is 6 to 10 times faster in training and is

more than 5 times faster in testing as compared to Code-

BERT. Specifically, CCBERT could be trained within 2-11

minutes for Task 1 and could give all predictions within 2

seconds which is 10 and 46 times faster than CodeBERT in

training and testing on average across three datasets. When

it comes to CC2Vec, specifically, CCBERT is 12.9 times

and 2.0 times faster than CC2Vec in the training/inference

time of the bug-fixing commit prediction (i.e., task 3) while

CCBERT is much slower than CC2Vec in the patch correctness

prediction (i.e., task 2). In general, CCBERT has a comparable

training/inference time with CC2Vec.

In addition, CCBERT introduces tailored designs for en-

coding, preprocessing, and model representation, compared to

traditional token or sub-token models like CodeBERT. These

modifications do not significantly affect training efficiency

but require specific data preprocessing/Transformer model

implementations prior to training. To further compare the effi-

ciency of our design and the original Transformer design, we

create a Transformer model with the same model architecture

parameters (e.g., the number of layers and the vocabulary size)

with CCBERT. Then we finetune the Transformer model with

the same training hyper-parameters (e.g., the batch size and

the number of epochs) as CCBERT. For the patch correctness

assessment task, CCBERT took about 2 minutes to complete

the training while the created Transformer also required 1

minute 56 seconds in its training. This indicates that the

tailored designs in CCBERT do not significantly affect training

efficiency.

CCBERT is about 6–10× and 5–30× faster than Code-

BERT in finetuning and testing.

Summary: Results show that CCBERT consistently

outperforms larger pre-trained code models, such as

CodeBERT and GraphCodeBERT, despite having a

model size that is 3 times smaller. This suggests that

our proposed pre-training tasks are effective in capturing

the semantics of code changes and could manage to con-

sistently outperform other much larger pre-trained code

models. On the other hand, the smaller model size of

CCBERT also has some benefits, including significantly

reduced training time (6–10× less), inference time (5–

30× less), and GPU memory usage (7.9× less).

D. Threats to Validity

Threats to internal validity relate to errors in our ex-

periments and implementation. To replicate the task-specific

approach for each task, we reuse the implementations released

by the original works. One threat to external validity relates

to the generality of the distributed representation generated by

CCBERT. To train CCBERT, we use an existing large-scale

dataset that consists of more than 663k commits (about 1M

hunks after pre-processing). However, the dataset is only based

on Java programs. In the future, we plan to construct a more

diverse dataset to learn code changes in multiple programming

languages. Threats to construct validity relate to the evaluation

metrics and the statistical hypothesis test that we consider. We

reuse the same evaluation metrics considered in the original

downstream tasks. We use a standard statistical hypothesis

test, Wilcoxon Signed Rank Test [34], to check whether the

performance difference between two competing approaches

is significant. This test has been used in many past studies,

e.g., [49], [50], [51]. Most of the metrics and the statistical

hypothesis test are well known. Thus, we believe that this

threat is minimal.

VI. RELATED WORK

Most of the work related to code changes are targeted for a

specific task like just-in-time defect prediction. PatchNet [3]

and DeepJIT [1] utilized CNN-based neural networks to

extract the representation from code change hunks and used

the representations to conduct bug-fix commit prediction and

just-in-time defect prediction respectively. Commit2Vec [52]

applied code representation learned by Code2vec [53] and

another pretext task of predicting the priority of Jira tick-

ets. They evaluated their code representations in the binary

classification of security-related commits. Dong et al. [54]

proposed a commit message generation approach that turns

code changes into graphs. They turned code change hunks

into chopped ASTs, extracted edit information by comparing

chopped ASTs, and formed a graph by considering both

191

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

the token information and the edit information. Then, they

adopted a graph-neural-network-based encoder to embed the

code change graphs and use a Transformer decoder to generate

the commit message.

Another related work is proposed by Yin et al. [55] which

represents the salient information of an edit. Their method

combined both syntactic and semantic information of code

edits to learn the representation of edits and evaluated the ef-

fectiveness of their learned representation in the task of gener-

ating the new code given the old code. The approach proposed

by Yin et al. also produces code change representation. The

major differences between their work and ours are: 1) Different

goals. CCBERT aims to learn a generalizable representation

that can be used in diverse downstream tasks. However, Yin

et al.’s work aims to get good performance specifically for

the source code edit task. 2) Different supervision signals.

Their work generates the new version of code from the old

version of code. Thus, they use the new version of code (a

whole sequence) as the supervision signal. On the other hand,

CCBERT separately predicts each masked code token and

each masked edit action which are fine-grained token-level

supervision signals. 3) Different Frameworks. Their work uses

the auto-encoder framework with LSTM [56] and GNN [57]

to learn the representation of changes while CCBERT uses

the Transformer encoder and follows BERT [17] which is a

general framework leveraging a large corpus of unlabeled data.

In summary, the above-mentioned works do not aim for a

generalizable representation for multiple tasks but mainly aim

to produce a decent performance on a specific task. Differently,

CCBERT aims to learn a generalizable representation that can

be used in multiple downstream tasks by using large-scale pre-

training data and novel pre-training objectives.

VII. CONCLUSION

In this work, we propose CCBERT, a code change rep-

resentation model via self-supervised pre-training. CCBERT

is pre-trained on a large-scale unlabeled code change dataset

with four novel pre-training objectives designed for code

changes. We evaluate CCBERT on three downstream code

tasks (just-in-time defect prediction, patch correctness predic-

tion, and bug-fixing commit prediction). Experimental results

show that CCBERT significantly outperforms the prior state-

of-art code change representation model CC2Vec or task-

specific state-of-the-art approaches by 7.7%–14.0% in terms

of different metrics. We further compare the effectiveness of

CCBERT with other larger pre-trained code models such as

CodeBERT. Experimental results demonstrate that CCBERT

achieves consistently better results than other large pre-trained

code models with 7.9 times less GPU memory, 6–10 times

faster in training, and 5–30 times faster in inference. In our

future work, we plan to leverage commit messages to improve

CCBERT by filtering out low-quality commit messages. We

are also interested in applying CCBERT to other code change-

related tasks. A replication package of our work is available

at https://github.com/soarsmu/CCBERT.

Acknowledgement. This research / project is supported by

the National Research Foundation, Singapore, under its In-

dustry Alignment Fund – Pre-positioning (IAF-PP) Funding

Initiative. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the author(s)

and do not reflect the views of National Research Foundation,

Singapore.

REFERENCES

[1] T. Hoang, H. Khanh Dam, Y. Kamei, D. Lo, and N. Ubayashi, “Deepjit:
An end-to-end deep learning framework for just-in-time defect predic-
tion,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR), 2019, pp. 34–45.

[2] H. Tian, K. Liu, A. K. Kaboré, A. Koyuncu, L. Li, J. Klein, and
T. F. Bissyandé, “Evaluating representation learning of code changes for
predicting patch correctness in program repair,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2020, pp. 981–992.

[3] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo,
“Patchnet: Hierarchical deep learning-based stable patch identification
for the linux kernel,” IEEE Transactions on Software Engineering,
vol. 47, no. 11, p. 2471–2486, Nov 2021. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2019.2952614

[4] W. Mellin, “Work with new electronic ‘brains’ opens field for army
math experts,” The Hammond Times, vol. 10, p. 66, 1957.

[5] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: distributed
representations of code changes,” in ICSE ’20: 42nd International
Conference on Software Engineering, Seoul, South Korea, 27 June - 19
July, 2020, G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 518–529.
[Online]. Available: https://doi.org/10.1145/3377811.3380361

[6] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained
model for programming and natural languages,” in Findings of the
Association for Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, ser. Findings of ACL, T. Cohn,
Y. He, and Y. Liu, Eds., vol. EMNLP 2020. Association for
Computational Linguistics, 2020, pp. 1536–1547. [Online]. Available:
https://doi.org/10.18653/v1/2020.findings-emnlp.139

[7] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B.
Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and M. Zhou,
“Graphcodebert: Pre-training code representations with data flow,”
in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
[Online]. Available: https://openreview.net/forum?id=jLoC4ez43PZ

[8] B. Wang, M. Yan, Z. Liu, L. Xu, X. Xia, X. Zhang, and D. Yang,
“Quality assurance for automated commit message generation,” in 2021
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2021, pp. 260–271.

[9] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[10] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du, and Y. Qian, “Generating
commit messages from diffs using pointer-generator network,” in 2019
IEEE/ACM 16th International Conference on Mining Software Reposi-
tories (MSR). IEEE, 2019, pp. 299–309.

[11] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 2013, pp. 422–431.

[12] W. Maalej and H.-J. Happel, “Can development work describe itself?”
in 2010 7th IEEE working conference on mining software repositories
(MSR 2010). IEEE, 2010, pp. 191–200.

[13] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine
learning benchmark dataset for code understanding and generation,”
arXiv preprint arXiv:2102.04664, 2021.

[14] K. Herzig and A. Zeller, “The impact of tangled code changes,” in
2013 10th Working Conference on Mining Software Repositories (MSR).
IEEE, 2013, pp. 121–130.

192

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

[15] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[16] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the marquardt algorithm,” IEEE transactions on Neural Networks, vol. 5,
no. 6, pp. 989–993, 1994.

[17] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
4171–4186. [Online]. Available: https://doi.org/10.18653/v1/n19-1423

[18] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers:
A survey,” ACM Comput. Surv., vol. 55, no. 6, dec 2022. [Online].
Available: https://doi.org/10.1145/3530811

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[20] M. Monperrus, M. Martinez, H. Ye, F. Madeiral, T. Durieux, and Z. Yu,
“Megadiff: A dataset of 600k java source code changes categorized
by diff size,” CoRR, vol. abs/2108.04631, 2021. [Online]. Available:
https://arxiv.org/abs/2108.04631

[21] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[22] Z. Zhao, H. Chen, J. Zhang, X. Zhao, T. Liu, W. Lu, X. Chen, H. Deng,
Q. Ju, and X. Du, “Uer: An open-source toolkit for pre-training models,”
EMNLP-IJCNLP 2019, p. 241, 2019.

[23] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in
International Conference on Learning Representations, 2019. [Online].
Available: https://openreview.net/forum?id=Bkg6RiCqY7

[24] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[25] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial
study on the risk of software changes,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, 2012, pp. 1–11.

[26] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–44, 05 2015.

[28] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp.
427–438.

[29] G. H. Nguyen, A. Bouzerdoum, and S. L. Phung, “Learning pattern
classification tasks with imbalanced data sets,” Pattern recognition, pp.
193–208, 2009.

[30] Q. Gu, Z. Cai, L. Zhu, and B. Huang, “Data mining on imbalanced data
sets,” in 2008 International Conference on advanced computer theory
and engineering. IEEE, 2008, pp. 1020–1024.

[31] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 233–240.

[32] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.

[33] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” ser. ICML ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 233–240. [Online]. Available:
https://doi.org/10.1145/1143844.1143874

[34] F. Wilcoxon, “Individual comparisons by ranking methods,” in Break-
throughs in statistics. Springer, 1992, pp. 196–202.

[35] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 24–36.

[36] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure
worse than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 532–543.

[37] B. Lin, S. Wang, M. Wen, and X. Mao, “Context-aware code change
embedding for better patch correctness assessment,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 31, no. 3, pp.
1–29, 2022.

[38] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in Proceedings of the 31st International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
E. P. Xing and T. Jebara, Eds., vol. 32, no. 2. Bejing, China:
PMLR, 22–24 Jun 2014, pp. 1188–1196. [Online]. Available:
https://proceedings.mlr.press/v32/le14.html

[39] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu,
J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of test suite based
program repair: A systematic assessment of 16 automated repair systems
for java programs,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 615–627.

[40] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair,” in Proceedings of the 40th
international conference on software engineering, 2018, pp. 789–799.

[41] T. H. M. Le, D. Hin, R. Croft, and M. A. Babar, “Deepcva: Automated
commit-level vulnerability assessment with deep multi-task learning,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 717–729.

[42] G. K. Lee and R. E. Cole, “From a firm-based to a community-based
model of knowledge creation: The case of the linux kernel development,”
Organization science, vol. 14, no. 6, pp. 633–649, 2003.

[43] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in 2012 34th International Conference on Software Engineering (ICSE),
2012, pp. 386–396.

[44] X. Li and B. Liu, “Learning to classify texts using positive and unlabeled
data.” 01 2003, pp. 587–594.

[45] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[46] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks
for human action recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[47] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[48] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[49] B. Xu, T. Hoang, A. Sharma, C. Yang, X. Xia, and D. Lo, “Post2vec:
Learning distributed representations of stack overflow posts,” IEEE
Transactions on Software Engineering, 2021.

[50] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E. Hassan, “Impact
of discretization noise of the dependent variable on machine learning
classifiers in software engineering,” IEEE Transactions on Software
Engineering, vol. 47, no. 7, pp. 1414–1430, 2019.

[51] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
vol. 46, no. 12, pp. 1267–1293, 2018.

[52] R. Cabrera Lozoya, A. Baumann, A. Sabetta, and M. Bezzi, “Com-
mit2vec: Learning distributed representations of code changes,” SN
Computer Science, vol. 2, no. 3, pp. 1–16, 2021.

[53] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[54] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao,
“Fira: Fine-grained graph-based code change representation for auto-
mated commit message generation,” 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), pp. 970–981, 2022.

[55] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt,
“Learning to represent edits,” the Seventh International Conference on
Learning Representations (ICLR), 2019.

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[57] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

193

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on January 12,2024 at 04:24:30 UTC from IEEE Xplore. Restrictions apply.

