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Abstract—Statistical language models on source code have
successfully assisted software engineering tasks. However, de-
velopers can create or pick arbitrary identifiers when writing
source code. Freely chosen identifiers lead to the notorious
out-of-vocabulary (OOV) problem that negatively affects model
performance. Recently, Karampatsis et al. showed that using the
Byte Pair Encoding (BPE) algorithm to address the OOV problem
can improve the language models’ predictive performance on
source code. However, a drawback of BPE is that it does not
split the identifiers in a way that preserves the original semantics.
Prior researchers also show that splitting compound identifiers
into sub-words that reflect the semantics can benefit software
development tools. These two facts motivate us to explore whether
identifier splitting techniques can be utilized to augment the
BPE algorithm and boost the performance of open-vocabulary
language models considered in Karampatsis et al.’s work.

This paper proposes to split identifiers in both constructing vo-
cabulary and processing model inputs procedures, thus exploiting
three different settings of applying identifier splitting to language
models for the code completion task. We contrast models’
performance under these settings and find that simply inserting
identifier splitting into the pipeline hurts the model performance,
while a hybrid strategy combining identifier splitting and the BPE
algorithm can outperform the original open-vocabulary models
on predicting identifiers by 3.68% of recall and 6.32% of Mean
Reciprocal Rank. The results also show that the hybrid strategy
can improve the entropy of language models by 2.02%.

Index Terms—Open Vocabulary, Identifier Splitting, Language
Model of Code

I. INTRODUCTION

Numerous works have applied statistical language models
(LMs) on source code to help tackle important tasks in
software engineering, including code completion [1], program
repair [2], and many others [3]. Same as modeling natural
language, creating appropriate vocabulary is a crucial prereq-
uisite [4]. However, when writing source code, software devel-
opers can create arbitrary identifiers they like, which probably
contain multiple words, e.g. addItemsToList. Due to this
fundamental fact, models of code often get an extremely sparse
vocabulary containing many rare words when processing code
corpora. Training models with such sparse (and typically large)
vocabulary is ineffective, and obtained models often have poor
performance [4]. In addition, if identifiers are not observed in
the vocabulary, the model cannot handle them, which is known
as the notorious out-of-vocabulary (OOV) problem.

Currently, open-vocabulary methods like Byte-Pair Encod-
ing (BPE) algorithm [5] are widely used in modeling natural
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languages and achieve promising results in practice. These
methods can solve the OOV problem while customizing the
size of the vocabulary. Inspired by such success, Karampatsis
et al. [6] first applied the BPE algorithm to construct vo-
cabulary from source code and showed that open-vocabulary
LMs have outstanding performance on the code completion
task. However, BPE selects the most frequent sub-words into
the vocabulary, and this frequency-based approach often fails
to capture the semantics and intentions of identifier names
when choosing sub-words. Although developers create any
identifiers at will, they usually follow certain naming con-
ventions that make identifiers meaningful, legible and easy
to understand, either in camelCase or in snake case [7].
For example, the method name getListener follows the
camelCase convention, and a programmer can easily infer that
this method can be used to get a Listener object. At the
same time, the BPE algorithm will represent it as three sub-
words in our preliminary study: get, List and ener, the
latter two do not reflect the semantics developers try to convey.

In order to empower the BPE algorithm with the ability
to better sense semantics when splitting words, an intuitive
preprocessing strategy is to split compound identifiers into
several words that can imply certain meanings, which is
called identifier splitting techniques. Prior research works have
demonstrated that identifier splitting can benefit information
retrieval models for program comprehension tasks, e.g., fea-
ture localization [8], code reuse [9]. However, this empirical
conclusion is ambiguous for modern LMs of code as no
such work has demonstrated it. As stated above, compared
with closed-vocabulary models, open-vocabulary LMs assist
some software engineering tasks more effectively but are
weak in capturing the semantics of identifiers when creating
vocabulary. Thus, it is imperative to clarify if we can improve
the performance at a more considerable margin by combining
identifier splitting with the BPE algorithm.

In this paper, we investigate the potential benefits of splitting
identifiers in open-vocabulary LMs of code. Specifically, we
adopt the same LMs presented by Karampatsis et al. [6], which
are the first to adopt the BPE algorithm in code modeling. To
achieve the goal, we propose to apply identifier splitting in two
stages of open-vocabulary LMs: vocabulary construction and
model input processing. Furthermore, we propose two different
preprocessing strategies in these stages to apply identifier
splitting techniques: (1) simple strategy: we split all identifiers
in vocabulary construction and apply identifier splitting before



in model input processing stages; (2) hybrid strategy: in the
vocabulary construction stage, we first split all identifiers and
then merge them with original corpora. In the model input
processing stage, we apply identifier splitting only when BPE
fails to tokenize them as the original forms. We train LMs
under these different settings and evaluate them on the code
completion task as [6] to show the effectiveness of identifier
splitting in open-vocabulary LMs.

We perform experiments on the C language dataset released
by Karampatsis et al. [6]. We evaluate the cross entropy of
LMs, and use Mean Reciprocal Rank (MRR) to measure
the performance of LMs on the code completion task. Fur-
thermore, we also obtain the MRR and recall at rank 10
(R@10) on predicting identifier tokens (excluding keywords,
punctuations, etc.). The experimental results show that simply
performing identifier splitting into preprocessing procedures
does not suffice; it degrades MRR by 0.46% and 5.68%
on predicting all tokens and identifiers, respectively. At the
same time, the hybrid strategy is more effective for open-
vocabulary LMs, outperforming the LMs with the original
setting by 6.23% of MRR on predicting identifier tokens. The
improvements of 2.02% of LMs entropy and 3.68% in terms
of R@10 on predicting identifiers also confirm the hybrid
strategy’s effectiveness. The results highlight that the identifier
splitting can be combined with open-vocabulary methods to
enhance the performance of language models of source code.

The rest of this paper is organized as follows. Section II
briefly describes backgrounds of this paper. In Section III, we
elaborate our methodology to apply identifier splitting in the
code completion pipelines. We describe the experiment set-
tings and present the results of our experiments in Section IV.
Section V discusses some related works. Finally, we conclude
the paper and present future work in Section VI.

II. BACKGROUND

This section introduces the background of related techniques
in this work, including identifier splitting techniques and the
Byte-Pair Encoding (BPE) algorithm.

A. Naming Convention and Identifier Splitting

While identifier names do not affect program functions
and human developers can pick or create names at will,
some naming conventions are encouraged to follow as they
can give meaningful and well-readable names so that other
programmers’ comprehension of code can be considerably
improved [10]. Two widely adopted naming conventions are
camelCase rule and snake case rule [7]. However, simply
splitting by conventions is not accurate enough when ex-
tracting meaningful sub-words from compound identifiers,
especially for identifiers that do not strictly follow naming
conventions (e.g., the same-case identifier where all characters
are in the single case like httprequest). Several more pre-
cise and innovative identifier splitting approaches are proposed
to handle more sophisticated situations beyond conventions, in
which Ronin [11] is the state-of-the-art. Ronin splits identifiers

into sub-words based on various heuristic rules and a pre-
defined frequent sub-word table. In this paper, we take Ronin
as a representative of identifier splitting tools.

B. Byte-Pair Encoding

In this paper, we use a popular open-vocabulary method
called the Byte-Pair Encoding (BPE) algorithm [5]. BPE
algorithm consists of two components: (1) the vocabulary
construction stage, which takes text corpora and returns a
vocabulary with the predefined size; and (2) the tokenization
stage, which segments and tokenizes new corpora with the
built vocabulary and returns a sequence of tokens. Specifically,
corpora are first split into tokens with only one character, the
BPE algorithm iteratively merges the most frequent pair of
tokens into a new single token until a given maximum number
of merge operations is reached. These single tokens are then
used to replace the original pair of tokens in the corpora.
The resulting vocabulary is an ordered list of sub-word units
created from the merge operations. When we run the BPE
algorithm on new corpora using the vocabulary, the tokens
are merged in the same order as occurred during vocabulary
construction.

III. METHODOLOGY

Figure 1 presents an overview of how we apply identifier
splitting in the open-vocabulary language models. It shows that
identifier splitting can be used in both vocabulary construction
and model inputs processing procedures before training the
language models. We elaborate the motivation and processing
details as follows.

Vocabulary Construction. As shown in Figure 1, we apply
the BPE algorithm on the input code corpora and output a
vocabulary with a predefined size. The vocabulary will be used
in the tokenization of model inputs later.

As introduced in Section II, the BPE algorithm builds
a vocabulary based on the frequency of pairs appearing in
training corpora. Prior works sample some software projects
as a corpus to create a vocabulary, and then use the vocabulary
to tokenize other mutually exclusive projects [6]. We notice
the fact that many complex identifiers are usually project-
specific or even file-specific. Researchers have shown that
code has a high degree of localness, where identifiers are
repeated often within close distance while they are rarely used
in other projects [12]. It means that the vocabulary created
on one corpus may contain many complex compounds (as
they appear very frequently in the corpus). However, those
complex compounds are likely to be rare in other corpora.
For a vocabulary with limited size, these rare compounds
infringe the space of sub-words that could be applied in the
BPE procedure of other corpora, reducing the efficiency of
the vocabulary. It motivates us to apply identifier splitting
techniques to the corpus.

Identifier splitting can decompose complex identifiers into
several sub-words. Karampatsis et al. [6] find that on a corpus
of around 11.6 million unique tokens, the size of this corpus
decrease dramatically by around 90% after splitting identifiers.
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Fig. 1. The overview of three strategies about applying the BPE algorithm and identifier splitting in the language models. Original refers to the original
setting, which only adopts BPE, and no identifier splitting is involved. Simple Strategy and Hybrid Strategy refer to two different strategies which
combine identifier splitting with BPE.

It implies that although the complex compounds are usually
project-specific, the subunits that make up these compounds
are highly repetitive across different projects. Instead of cre-
ating a vocabulary that contains many complex words, we
propose to construct a vocabulary based on the corpus after
identifier splitting (Split Corpora as in Figure 1).

We do not claim that using identifier splitting to process the
corpus is always beneficial. Integrating identifier splitting in
the vocabulary creation may lead to some negative impacts.
The vocabulary created by the corpora after identifier splitting
may need to use multiple sub-words to represent common
compounds shared across different projects, e.g., popular API
names. Splitting such common compounds may increase the
length of the tokenized sequence and make it harder to relate
the current prediction to the past context of inputs [6]. Thus,
we propose another strategy that merges the original and split
corpora and builds a vocabulary from the combined corpora
to tackle the issue (Merged Corpora as in Figure 1).
Model Inputs Processing. As shown in Figure 1, the model
input processing part takes input tokens and processes them
into lists of sub-tokens for language model training. To handle
an input token that is not in the vocabulary, we use the BPE
algorithm to decompose this input into a list of sub-tokens and
then feed these sub-tokens into the model. As stated in Section
II, the vocabulary created by the BPE algorithm is an ordered
list of sub-words. When BPE decomposes input tokens, it
will follow the same order as recording in the vocabulary.
We take the identifier getCategory as an example. If we
directly apply BPE (using a vocabulary of 10, 000 words) to
this identifier, we get the following three sub-tokens: getC,
ateg and ory, which obviously break the original semantics
of the identifier name. Although the word Category is in
vocabulary, its position (9096th) is almost close to the end.
When BPE traverses the vocabulary, it will encounter and
create the sub-token getC (1383th) much earlier. If we first
split this identifier into get and Category, and then apply
BPE (using the same vocabulary) on the two words, we still
get get and Category. Identifier splitting can utilize the

semantic information conveyed with naming convention and
prevent less meaningful sub-tokens (e.g., getC and ateg)
from being created. This observation inspires us to apply
identifier splitting before BPE.

Splitting model inputs may also lead to negative impacts.
For instance, identifiers (e.g., types of exceptions or methods
like toString) can be shared across different projects,
especially in object-oriented programming languages like Java.
Such identifiers can frequently appear in the corpus and
consequently are included in the vocabulary. They can be
compactly represented only using one token, while identifier
splitting will force them to be represented using multiple sub-
tokens. As a result, we use a hybrid strategy to mitigate such
negative impacts. More specifically, we first apply BPE to an
identifier. If the tokenized result is identical to the original
identifier, we directly feed it into the model. Otherwise, we
feed the separated tokens to BPE after applying identifier
splitting.

Considering the above, we combine the different operations
in the vocabulary construction and the model inputs and
propose the following three settings as shown in Figure 1 to
explore the effectiveness of identifier splitting in the open-
vocabulary LMs:
• Original: using the BPE algorithm to create a vocabulary

directly and then use the vocabulary to tokenize corpora as
input. No identifier splitting is applied in this setting;

• Simple strategy: splitting all identifiers in corpora first
then use BPE to construct a vocabulary, and splitting all
identifiers in model inputs;

• Hybrid strategy: splitting identifiers and merging them
with original corpora for BPE vocabulary construction, and
splitting identifiers in model inputs only when BPE fails to
tokenize them as the original forms.

IV. EXPERIMENTS AND RESULT ANALYSIS

A. Implementation and Datasets

To make the experiments under a computationally feasible
scale, we select a lightweight, yet still effective Gated Recur-



rent Unit (GRU) model [13]. The model is also used in a recent
work by Karampatsis et al. [6], which aims to analyze how
the BPE algorithm can improve LMs of code. Also, inspired
by [6], we limit the vocabulary size to 10k, set the input length
and dimension of the GRU model as 200 and 512, and train all
models using the stochastic gradient descent optimizer with a
learning rate of 0.1 and a mini-batch size of 32.

We use the dataset released by Karampatsis et al. [6] in
our experiments, which consists of 177/141/73 open-source
projects in C language for training/validation/testing. Before
training LMs, the corpora are processed in the same way
as [6], removing strings of more than 15 characters length,
non-ASCII tokens and comments. We only use the training
set to construct the vocabularies. The replication package are
available via https://github.com/soarsmu/CodeNLM.git.

B. Target Task and Evaluation Metrics

Language Model. We use the average per token cross
entropy to evaluate the performance of our language models.
The cross entropy is viewed as an intrinsic metric of LMs
and employed in the previous work [6]. By computing the
logarithm mean of probability scores assigned by the LM
over a sequence of source code, it estimates the average of
bits required when using LMs to predict each token. A lower
value of the cross entropy is favourable because it indicates
LMs are easier to make correct predictions. Because the open-
vocabulary LMs are based on sub-words units, the cross
entropy is formalized as follows to compute the distribution
over all sub-words w1

i , . . . , w
m−1
i instead of each token ti:

H(N) = − 1

N

N∑
n=1

log

M∏
m=1

p(wm
i |t1, ..., tn−1, w

1
i , ..., w

m−1
i ) (1)

where N is the number of tokens in the sequence,
M is the number of sub-words contained in ti, and
p(wm

i |t1, ..., tn−1, w
1
i , ..., w

m−1
i ) is the probability of the sub-

word wm
i given all the previous tokens and sub-words.

Code Completion. Automated code completion, an essen-
tial feature of modern integrated development environments
(IDEs), aims to suggest a range of possible subsequent tokens
within a toggle list. In open-vocabulary models, while a
complete token could be a combination of multiple sub-words,
this task can be formalized as maximizing the probability:
argmax p(w1, · · · , wn|code before), in which code before
is the previous code snippet and w1, · · · , wn constitute the
next complete token. The probability of the next complete
token is the product of the probability of each sub-word. To
obtain a complete token in open-vocabulary LMs, we use a
customized beam search algorithm introduced by [6], which
can efficiently search through the sub-word expansion space
and returns the top k most possible complete candidates.

We evaluate the results with the widely-used Mean Recip-
rocal Rank (MRR) metric. MRR takes the rank of the correct
answer as the primary grading criteria. For each token, if the
correct answer ranks nth position among the top k candidates,

TABLE I
PERFORMANCE OF THE CONSIDERED MODELS UNDER DIFFERENT

STRATEGIES.

Strategy All Tokens Identifiers

Entropy MRR R@10 MRR

Original 4.46 64.61 37.55 21.83
Simple 4.45(-0.22%) 64.31(-0.46%) 36.26(-3.44%) 20.59(-5.68%)
Hybrid 4.37(-2.02%) 65.24(+0.98%) 38.93(+3.68%) 23.19(+6.23%)

the score would be 1
n . MRR is calculated by the following

equation.

MRR =
1

|T |

|k|∑
i=1

1

ranki
(2)

Statistics conducted by Hellendoorn et al. [14] on real-world
code completion scenarios observes that LMs for completion
perform worse on identifiers than other types of tokens.
Therefore, we also present the MRR and recall at rank 10
(R@10) on predicting identifier tokens particularly (excluding
keywords, punctuations, etc.).

C. Results

We compare the performance of language models with
different strategies. We denote the LMs with original settings,
LMs with simple strategy and LMs with hybrid strategy as
OriLMs, SSLMs and HSLMs, respectively.

Table I shows the performance of different LMs. We find
that SSLMs perform the worst among the three models.
Although the entropy of SSLMs is slightly improved in com-
parison to OriLMs, SSLMs degrade the MRR on predicting all
tokens by 0.46%, which reflects that the model’s performance
is not good as the OriLMs. For predicting identifier tokens,
we observe a bigger performance gap between OriLMs and
SSLMs. In terms of R@10 and MRR on predicting identifiers,
OriLMs outperform SSLMs by 3.44% and 5.68%, respec-
tively. These results indicate that the simple strategy is not
adequate for open-vocabulary LMs and even hurts the entropy
and performance of LMs on the code completion task in most
cases.

However, we observe that HSLMs outperform OriLMs by
up to 0.98% in terms of MRR on predicting all tokens. The
models’ entropy decreases 2.02%, showing that the hybrid
strategy boosts open-vocabulary LMs. Compared with the
results on all token prediction, HSLMs outperform OriLMs
by a larger margin on identifier prediction: the results are
boosted to 3.68% and 6.23% in terms of R@10 and MRR,
respectively. The results demonstrate that combining identifier
splitting with the BPE algorithm can improve the performance
of open-vocabulary LMs, especially the improved performance
on identifier prediction reveals that the LMs with hybrid
strategy can synthesize identifiers from sub-words better.

In summary, by following the hybrid strategy, identifier
splitting can boost the performance of open-vocabulary LMs
of code. The performance of open-vocabulary LMs can be
improved by 0.98% and 6.23% in terms of MRR on predicting
both all tokens and identifiers. The entropy of LMs and R@10
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on predicting identifiers can also be improved by 2.02% and
3.68%.

V. RELATED WORK

In the literature, prior studies have been interested in em-
ploying language models on source code to assist software
development [1], [2]. However, the identifiers with complex
names in source code make these models suffer from the
out-of-vocabulary (OOV) problem. Increasing the size of a
vocabulary has a limited effect on addressing the problem
and makes models harder to scale [4]. Recently, researchers
have applied open vocabulary methods for code modeling.
Karampatsis et al. [6] are the first to investigate whether
open-vocabulary methods can improve the performance of this
code completion tool. They trained a GRU-based language
model with the BPE algorithm and showed that the model
performance increases over close-vocabulary models across
three datasets.

At the same time, numerous works about identifier splitting
have been proposed before, and several studies have empir-
ically compared these different techniques [15], [16]. Some
previous works also try to segment identifiers by naming
conventions [17], [18] in vocabulary construction, but no
precedent work about utilizing advanced identifier splitting
methods and combining with open-vocabulary methods exists.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the benefit of identifier splitting
techniques on code modeling. We propose two strategies to
combine identifier splitting with Byte-Pair Encoding (BPE)
algorithm. We train open-vocabulary models with different
strategies and compare the performance over the C language
dataset. The evaluation results show that splitting identifiers
improves the performance of open-vocabulary models under a
hybrid strategy, which can improve LMs by 6.23% in terms of
MRR on predicting identifiers. The entropy of LMs and R@10
on predicting identifiers are also improved by up to 2.02%
and 3.68%. Our study confirms that the potential benefits
of identifier splitting methods on open-vocabulary language
models for C language.

In the future, we plan to validate our findings on more
programming languages beyond C, e.g., Java and python.
Also, we are interested in considering more models with
different architectures, e.g., Transformer-based models, which
have recently drawn researchers’ attention. Besides, we also
plan to investigate whether the improved LMs can have the
potential to empower more software engineering tasks, such
as code clone detection [19], bug localization [20], [21], and
code search [22].
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